College of Engineering, Pune

An Autonomous Institute of Govt. of Maharashtra, Permanently Affiliated to S.P. Pune University)

Department of Civil Engineering

Structural Engineering

Curriculum Structure & Detailed Syllabus (PG Program)

M. Tech.

(Effective from: A.Y. 2019-23)

Program Educational Objectives (PEOs)

- **I.** Graduate will work as an expert in the field of Structural Engineering by acquiring advanced knowledge in the area of analysis and design of structural systems.
- **II.** Graduate will analyze and solve complex problems of Structural engineering systems.
- **III.** Graduate will exhibit professionalism, ethical approach, communication skills, and team work in their profession and adapt to modern trends by engaging in lifelong learning.

Program Outcomes (POs)

Graduates will be able to

PO1: Apply knowledge of science, mathematics, and engineering principles for developing problem solving attitude.

PO2: Write and present a substantial technical report/document.

PO3: Demonstrate a degree of mastery in Structural Engineering. (The mastery at a level higher than the requirements in the appropriate bachelor program.)

PO4: Gain knowledge/skill in integrating Structural Engineering concepts for collaborative multidisciplinary solutions, carry out planning and management of projects considering economic and financial factors as a member and as a leader of the team.

PO5: Recognize the need for, and have ability in lifelong learning independently for professional advancement, demonstrate professional ethics, work culture and understanding of responsibility to contribute to community for sustainable development of society.

Correlation between the PEOs and the Pos

Note: The cells filled with \checkmark indicate the fulfilment/correlation of the concerned PEO with the PO.

Program Educational Objectives	Program Outcomes (Pos)					
(PEOs)	а	b	с	d	e	
Ι	\checkmark	\checkmark		\checkmark		
II	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
III		\checkmark	\checkmark	\checkmark		

Components of the curriculum

Abbreviation	Title	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
PSMC	Program Specific Mathematics Course	5.90	04	04
PSBC	Program Specific Bridge Course	4.40	03	03
DEC	Department Elective Course	13.20	09	09
MLC	Mandatory Learning Course	00	07	00
РСС	Program Core Course	32.40	16	22
LC	Laboratory Course	2.90	12	02
IOC	Institute Level Open Elective Course	4.40	03	03
LLC	Liberal Learning Course	1.50	00	01
SLC	Self-Learning Course	8.80	06	06
SBC	Skill Based Course	26.50	36	18
	Total	100	96	68

Structure of the curriculum for 2019-2023

Sm	Course	Course		Total 1	10 of Conta	ct Hours	Cro
No	Туре	Code	Course Name	Lecture (L)	Tutorial (T)	Practical (P)	dits
1	PSMC	CSE- 19001	Numerical Method in Structural Engineering	3	1		4
2	PSBC	CSE- 19002	Advanced Analysis of RC Structures	3	0		3
		CSE(DE) -19001	Advanced Design of RC Structures	3			3
3	DEC	CSE(DE) -19002	Advanced Design of Steel Structures	5			5
4	PCC	CSE- 19003	Structural Dynamics	3	1		4
5	PCC	CSE- 19004	Solid Mechanics	3	1		4
6	LC	CSE- 19005	Lab Practice – I: NDT and Structural Dynamics			3	2
7	LC	CSE- 19006	Lab Practice – II: Computer Aided Design			3	2
						Total	22

Semester I

Semester II

Sm	Course	Course		Total N	o. of Conta	ct Hours	Cro
Sr. No	Type	Code	Course Name	Lecture	Tutorial	Practical	Cre dits
110	турс	Couc		(L)	(T)	(P)	uits
1	IOC		*MATLAB for	3			3
1	100		Engineers	5			5
2	DEC	CSE(DE)-19003	High Rise Structures	2			2
	DEC	CSE(DE)-19004	Bridge Engineering	3			3
3		CSE(DE)-19005	Structural Health Monitoring				
		CSE(DE	Nonlinear Analysis				
)-19006	of Structures				
	DEC	CSE(DE)-19007	Earthquake Analysis and Design	3			3
		CSE(DE	Design of				
)-19008	Prestressed Concrete Structures				
4	MLC	ML- 19011	Research Methodology and Intellectual Property Rights	2			
5	MLC	ML- 19012	Effective Technical Communication	1			
6	LLC	LL- 19010	Liberal learning Course				1
7	PCC	CSE- 19007	Finite Element Method	3	1		4
8	PCC	CSE- 19008	Theory of Thin Plates and Shells	3	1		4
9	LC	CSE- 19009	Mini Project			3	2
10	LC	CSE- 19010	Lab Practice – III: Experimental Concrete Technology			3	2
						Total	22

Semester III

Sr.	Course	Course Code	Course Name			Teaching
No	Туре	Course Coue		L	Т	Scheme
1	SBC	CSE-19011	Dissertation Phase – I			18
2	SLC	CSE-19012	Massive Open Online Course – I	3		
				То	tal	12

Semester IV

Sr.	Course	Course Code	Course Name			Teaching
No	Туре			L	Т	Scheme
1	SBC	CSE-19011	Dissertation Phase – II			18
2	SLC	CSE-19012	Massive Open Online Course – II	3		
				То	tal	12

Interdisciplinary Open Course (IOC): Every department shall offer one IOC course (in Engineering/Science/Technology). A student can opt for an IOC course offered by a department except the one offered by his/her department.

List of IOC opted by the students of Structural engineering program is attached here

- Mechanics of Composite Materials
- Finite Element Method
- Design thinking and Participatory Planning
- Application of Geoinformatics in Water Management
- Environmental Management
- Project Planning and Control
- Broadband Communication

Semester I

[PSMC] Numerical Methods in Structural Engineering		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
Tutorial: 1 hr./week	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,

CO_1: Understand basic concepts of various numerical methods for performing tasks, such as interpolation, differentiation, integration, solution of linear and nonlinear equations, solution of differential and integral equations

CO_2: Apply Numerical Methods to obtain approximate solutions to mathematical problems

CO_3: Analyse and evaluate accuracy of various numerical methods and their applicability

CO_4: Solve Structural engineering problems using numerical methods

CO_5: Write the code for a mathematical problem

Unit 1:	Fundamentals of Numerical Methods	[7 Hrs.]			
	Fundamentals of numerical methods Error analysis, Engineering	Systems,			
	Physical and Mathematical Modelling, Error Analysis Approximations and				
	round off and Truncation errors, Roots of nonlinear equations, multiple roots,				
	Solution of Linear Simultaneous Equations, Solution of Nonlinear Sin	nultaneous			
	Equations.				
Unit 2:	Eigen Values and Eigen Vectors	[7 Hrs.]			
	Power method, Relaxation Method, Diagonalization method.				
Unit 3:	Numerical Differentiation and Integration	[7 Hrs.]			
	High Accuracy Differentiation Formulas, Derivatives of Unequal Spa	aced Data,			
	Newton-Cotes formulae, Integration with unequal segments,	multiple			
	integration, Gauss Quadrature rule				
Unit 4:	Ordinary Differential Equations	[7 Hrs.]			
	Method of Weighted Residuals, Initial Value and Boundary Value	Problems,			
	Eulers method, Improvement of Eulers method, Runge-Kutta Method	l, Multiple			
	Steps Method				
Unit 5:	Finite Difference Method	[7 Hrs.]			
	Applications to beam bending, beam vibration, plate bending and plate	e vibration			
	problems				
Unit 6:	Partial Differential Equations	[7 Hrs.]			
	Elliptic and parabolic Equations, Explicit and Implicit Methods,	Computer			
	algorithms; Numerical solution for different structural problems us	ing above			
	mentioned numerical methods.				

- 1. Chapra S201 and Canale R P, Numerical Methods for engineering. Megraw-Hillnc, 7th Edition, 2016.
- 2. Scheid F, Theory, and problems of Numerical analysis. New York. McGraw Hill Book Co. (Shaum Series), 1988
- 3. Sastry S S, Introductory Methods of Numerical Analysis. Prentice-Hall of India, 1998

[PSBC] Advanced Analysis of Structures		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Analyse Indeterminate Structures using Stiffness Method
CO_2: Analyse Indeterminate Structures using Flexibility Method
CO_3: Develop Member stiffness matrices for Framed Structures
CO_4: Develop computer program for Plane Frame Structures
CO_5: Analyse Framed Structures using computer program

Unit 1:	Basic Concepts of Structural Analysis	[7 Hrs.]			
	Types of Framed Structures, Deformations in Framed Structures Actions and				
	Displacements, Equilibrium, Compatibility Static and Kinematic Indet	terminacy.			
	Principle of Superposition, Action and Displacement Equations, Flex	ibility and			
	Stiffness Matrices. Equivalent Joint Loads, Energy Concepts, Virtual	Work			
Unit 2:	Fundamentals of the Flexibility Methods	[7 Hrs.]			
	Flexibility Method, Temperature Changes, Pre-strains, and	Support			
	Displacements, Joint Displacements, Member End-Actions, and	l Support			
	Reactions, Flexibilities of Prismatic Members, Formalization of the Flexibility				
	Method				
Unit 3:	Fundamentals of the Stiffness Method	[7 Hrs.]			
	Stiffness Method Temperature Changes, Pre-strains and Support Displ	acements,			
	Stiffness of Prismatic Members, Formalization of the Stiffness Method				
Unit 4:	Direct Stiffness Method	[7 Hrs.]			
	Direct Stiffness Method. Complete Member Stiffness Matrices, Formation of				
	Joint Stiffness Matrix, Formation of Load Vector, Analysis of Continuous				
	Beams. Plane Truss Member Stiffnesses, Analysis of Plane Trusses, R	lotation of			
	Axes in Two Dimensions, Application to Plane Truss Members, Rotation	on of Axes			

	in Three Dimensions, Plane Frame Member Stiffnesses, Analysis of Plane
	Frames, Grid Member Stiffnesses, Analysis of Grids, Space Truss Member
	Stiffnesses, Selection of Space Truss Member Axes, Analysis of Space Trusses,
	Space Frame Member Stiffnesses, Analysis of Space Frames
Unit 5:	Stiffness Program for Framed Structures[7 Hrs.]
	Flow Charts for the Programs, Program Notation, Preparation of Data,
	Description of Programs, Continuous Beam Program, Plane Truss Program,
	Plane Frame Program, Grid Program, Space Truss Program
Unit 6:	Additional Topics in Stiffness Method[7 Hrs.]
	Loads between Joints. Temperature Changes and Pre-strains, Support
	Displacements, Oblique Supports, Elastic Supports, Non-prismatic Members,
	Releases in Members, Elastic Connections, Shearing Deformations, Axial-
	Flexural Interactions

- 1. MadhuKanchi, "Matrix Methods of Structural Analysis", New Age Publications, 2016
- 2. William Weaver and James Gere, "Matrix Analysis of Framed Structures", Van Nostrand, 1990
- 3. William McGuire, Richard Gallagher and Ronald Ziemian, "Matrix Structural Analysis" Bucknell Publications, 2000.
- 4. Devdas Menon, "Advanced Structural Analysis", Alpha Science International, 2009.
- 5. Igor Karnovsky and Olga Lebed, "Advanced Methods of Structural Analysis", Springer Publications, 2010.
- 6. Mohamed Abdel-Rohman, "Analysis of Structures", BookSurge Publishing, 2011

[DEC] Advanced Design of RCC Structures		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Analyse the Roofs and Material Storage Structures by understanding their behaviour
CO_2: Analyse the Water Storage Structures by understanding their behaviour
CO_3: Design the Roofs and Material Storage Structures by understanding their behaviour
CO_4: Design the Water Storage Structures by understanding their behaviour
CO_5: Prepare detailed structural drawings citing relevant IS codes

Unit 1:		[7 Hrs.]
	Theory and design of long span slab, grid floors, flat slabs, folded plates and	
	shells.	
Unit 2:		[7 Hrs.]
	Theory and design of silos, bunkers, aqueduct.	
Unit 3:		[7 Hrs.]
	Analysis and design of ground resisting reservoir, elevated service reservoir.	
Unit 4:		[7 Hrs.]
	Design of RC Deep beams and corbels, Design of beams curved in plan.	
Unit 5:		[7 Hrs.]
	Design of Domes, Intze tank	
Unit 6:		[7 Hrs.]
	Design of formwork	

- 1. P. C. Varghese, Advanced Reinforced Concrete Design; Prentice Hall of India, New Delhi
- 2. T.Y. Lin and N. H. Burns, Design of Prestressed Concrete Structures, John Wiley Publication.
- 3. N. Krishna Raju, Prestressed Concrete, Tata McGraw Hill Publishing Co.
- 4. Relevant Indian Codes

[DEC] Advanced Design of Steel Structures		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

|--|

CO_1: Analyse multistoried buildings using suitable software

CO_2: Design moment resisting connections

CO_3: Design beam column, frames, steel plate shear wall

CO_4: Analyse and design Trussed Girder Bridge

CO_5: Understand design procedure for earthquake, fire and temperature variation

Unit 1:	Bridging the Gap	[7 Hrs.]	
	Design of Tension and Compression Members, Design of column and	nd column	
	base – gusseted base		
Unit 2:	Design of Connections	[7 Hrs.]	
	Design of rigid and semi-rigid connections - beam to beam, beam t	to column,	
	Design of splices, Hunched connections		
Unit 3:	Torsion	[7 Hrs.]	
	Lateral torsional bucking of beams, Beam columns: Design for torsion, elastic		
	torsional buckling		
Unit 4:	Design of Plate Girder for Bridges	[7 Hrs.]	
	Design of plate Girder for earthquake, fatigue, fire, and temperature variations.		
	Introduction to design of Plate Girder for Bridges for high speed trains as per		
	IRS		
Unit 5:	Bracing Systems	[7 Hrs.]	
	Design of different types of bracings		
Unit 6:	PEB Structures	[7 Hrs.]	
	Design of gable framed pre-engineered building		

- 1. N. Subramanian, "Design 1 of Steel Structures, Oxford University Press, 2008.
- 2. John Baker and Jacques Heyman," Plastic design of frames: Fundamentals", Cambridge University press, Reprinted 2008.
- 3. Baker, Horne and Heyman, "The steel skeleton: Plastic behaviour and design", (Vol II)
- 4. Charles Salmon and John Johnson, "Steel Structures- Design and Behaviour", Harper Collins College Publishers, 1996.
- 5. Neal B.G, "Plastic Methods of Structural Analysis", Chapman and Hall London.
- 6. N.S. Trahair, M.A. Bradford, D.A. Nethercot, and L. Gardner, "The Behavior and Design of Steel Structures to EC3", 4th edition, Taylor and Francis
- 7. "IS 800-2007: General Construction in Steel" Code of Practice
- 8. SP-6 (BIS) ISI Handbooks for Structural Engineers
- 9. Indian Railways-Codes

[PCC] Structural Dynamics		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
Tutorial: 1 hr./week	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,

CO_1: Apply fundamental theory of structural dynamics and equation of motion of practical problems

CO_2: Analyse and interpret dynamic response of single degree of freedom system

CO_3: Analyse and interpret dynamic response of multi degree of freedom system

CO_4: Analyse and interpret dynamic response of systems with distributed parameters

CO_5: Perform dynamic analysis of single and multi-degree of freedom systems using MATLAB programs/software

Unit 1:	Introduction	[7 Hrs.]	
	Objectives of study, Importance of vibration analysis difference between static		
	and dynamic loading. Nature of exciting forces, Mathematical modeling of		
	dynamic systems, Development of equation of motion for lumped mass system.		
Unit 2:	Single Degree of Freedom (SDOF) System	[7 Hrs.]	
	Free and forced vibration with and without damping. Response to	harmonic	
	loading, Response to general dynamic loading using Duhamel's integra	al. Fourier	
	analysis for periodic loading. Numerical solution to response of linear	r and non-	
	linear systems using Newmark ß method.		
Unit 3:	Multiple Degree of Freedom (MDOF) System (Lumped	[7 Hrs.]	
	parameter)		
	Multiple Degree of Freedom System (up to 3 DOF). Formulation	of mass,	
	stiffness and damping matrices. Determination of natural frequencies and mass		
	mode shapes. Dynamic response by modal superposition method Dynamic		
	analysis of beams and plane frames. Reduction of dynamic matrices time history		
	response of MDOF systems using Newmark ß method		
Unit 4:	Multiple Degree of Freedom (MDOF) System (Distributed	[7 Hrs.]	
	parameter)		
	Development of equation of motion, Single span beams, free and forced		
	vibration response, Natural frequencies and mode shapes of uniform beams.		
Unit 5:	Response Spectra Method	[7 Hrs.]	
	Theory and development of response spectra, Codal provisions,	tripartite	
	response spectra.		
Unit 6:	Applications of structural dynamics	[7 Hrs.]	
	Design of machine foundations for harmonic loading, Vibration	isolation.	
	Introduction to techniques of vibration response control. Vibration control of		
	SDOF system.		

- 1. 1. Anil K. Chopra, "Dynamics of Structures Theory and Applications to Earthquake Engineering", Pearson, 3rdEdition, 2011
- 2. Gary Sons, Kevin Wong, "Structural Dynamics for Structural Engineers", John Wiley and Sons, 2000
- 3. J. W. Smith 1988 "Vibration of Structures. Application in Civil Engineering Design", Chapman and Hall, 1988
- 4. Mario Paz and William Leigh, "Structural Dynamics Theory and Computation, Updated with Sap2000", 5th Edition, Kluwer Academie Publishers
- 5. Clough, and J. Penzien, "Dynamics of Structures", Computers & Structures, Inc., University Ave, Berkeley, USA, 1995
- 6. Leonard Meirovitch," Fundamentals of Vibrations", Tata Mc Graw Hill, 2001
- 7. IS 2974 (2008) Code of practice for design and construction of machine foundations for reciprocating type machines.
- 8. IS 13301(1997) Vibration isolation of machine foundations Guidelines

	[PCC] Solid Mechanics	
Teaching Scheme:		Examination Scheme:
Lectures: 3 hrs./week		T1 and T2 – 20 marks each
		End Sem. Exam – 60 marks

Course Outcomes: At the end of the course, the students are able to,
CO_1: Understand basic concepts of stress and strain at a point in 3-D system
CO_2: Establish constitutive relationship for different theories of failure
CO_3: Analyse cross section using different theories of failure
CO_4: Solve complex problems by applying principles of Solid Mechanics
CO_5: Understand basic concepts of laminated composites

Unit 1:	Introduction	[7 Hrs.]
	Strength of Materials and Theory of Elasticity, Fundamentals, I	History of
	mechanics of materials.	
Unit 2:	Stress	[7 Hrs.]
	Cauchy Stress, Plane Stress, Stress Transformation, Principal Stress	es, Stress,
	Tensor, Invariant of stress tensor.	
Unit 3:	Strain	[7 Hrs.]
	Normal Strain, Strain-Displacement Relationships, Strain Transformation	tion, Plane
	Strain, Strain Tensor.	
Unit 4:	Constitutive Equation	[7 Hrs.]

	Normal Stress-Strain Response, Shear Stress -Strain Response, Gen	neralised
	Hooke's Law, Plastic deformations, Yield Criteria, Theories of Failure, Plastic	
	stress- strain Relations.	
Unit 5:	Applications [[7 Hrs.]
	Torsion of Cylindrical Bars, Shear Strain, Maximum Shear Stress, Non-	-circular
	Prismatic Bars, Beam Bending, Stresses under Transverse Loading, 7	Thermal
	Strains, Thermal Stresses.	
Unit 6:	Composite materials [[7 Hrs.]
	Introduction to Laminated Composites, Plane Stress of Orthotropic N	Material,
	Classical Lamination Theory, Effective Laminate Properties, Effective Axial	
	Modulus, and Effective Coefficient of thermal Expansion.	

- 1. LS Srinath, "Advance Mechanics of Solid", Tata Mc-Graw Hill Publications, 2009.
- 2. Mohammed Ameen, "Computational Elasticity", Narosa Publishing House, 2005.
- 3. Arvind Kumar Singh., "Mechanics of Soilds", Prentice Hall of India, 2007.
- 4. Carl T. Herakovich, "A Concise Introduction to Elastic Solids", Tata Mc-Graw Hill Publications, 2008.
- 5. Boresi A. P., Richard J. Schmidt., "Advanced Mechanics of Materials", (Sixth Edition) Wiley Publishing, 2003.
- 6. Martin H. Sadd, "Elasticity", Academic Press Elsevier, 2005.

[LC] Lab Practice 1: - NDT and Structural Dynamics	
Teaching Scheme:	Examination Scheme:
Lectures: 3 hrs./week	T1 and T2 – 20 marks each
	End Sem. Exam – 60 marks

Course Outcomes: At the end of the course, the students are able to,	
CO_1: Apply appropriate tools to design and conduct experiments	
CO_2: Select and apply appropriate techniques	
CO_3: Function as team member for laboratory work	
CO_4: Analyse Steel and RCC Structures	
CO_5: Design of Steel and RCC Structures	

Exp. 1:	: Estimation of compressive strength of concrete using Rebound Hammer	
Exp. 2:	Estimation of compressive strength of concrete using UPV	
Exp. 3: Corrosion prediction and analysis for RC member		

Exp. 4:	Structural audit of residential building	
Exp. 5:	Structural audit of public building	
Exp. 6:	Free vibration response of Reinforced Concrete Beam	
Exp. 7:	Free vibration response of Frames	
Exp. 8:	8: Determination of principal stresses using strain-gauges	
Exp. 9:	9: Response of Plane Frames under lateral loading.	

- 1. M. Paz and W. Leigh, "Integrated Matrix analysis of Structures", Kluwer Academic, 2001
- 2. M. Paz and W. Leigh, "Structural Dynamics Theory and Computation", Kluwer Academic, 2004
- 3. V. M. Malhotra and N. J. Cariano CRC Press, 2003, "Handbook of Non-destructive Testing of Concrete",
- 4. K. W. Day, J. Aldred and B. Hudson, "Concrete Mix Design, Quality Control and Specification", CRC Press, 2014
- 5. Boresi A. P., Richard J. Schmidt., "Advanced Mechanics of Materials", (Sixth Edition) Wiley Publishing, 2003.
- 6. Martin H. Sadd, "Elasticity", Academic Press Elsevier, 2005.

[LC] Lab Practice 2: - Computer Aided Design and Software based		
modeling		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,		
CO_1: Select and apply appropriate techniques		
CO_2: Apply appropriate tools to conduct experiments		
CO_3: Function as team member for laboratory work		
CO_4: Select and apply appropriate techniques		
CO_5: Apply appropriate tools to conduct experiments		

Unit 1:	Laboratory Experiments using software	
	A) Analysis and Design of Steel Structures	
	Analysis of plane frame for lateral loading	
	• Analysis of plane frame using different types of bracing systems	

B) Analysis and Design of RCC Structures
Analysis of RCC Building
Analysis of Building for Lateral Loading using Shear Walls

Semester II

[IOC] MATLAB for Engineering Applications	
Teaching Scheme:	Examination Scheme:
Lectures: 3 hrs./week	T1 and T2 – 20 marks each
	End Sem. Exam – 60 marks

Course Outcomes: At the end of the course, the students are able to,	
CO_1: Understand basic MATLAB programming	
CO_2: Develop the computer programs in MATLAB	
CO_3: Apply MATLAB for solving engineering problems	

Unit 1:	Basics of MATLAB	[7 Hrs.]
	MATLAB Environment for technical computing, Basic mathematical functions.	
	Arrays and Array Operations, Vector arrays, matrix arrays, Relational and logical	
	operators, loops	
Unit 2:	MATLAB Functions	[7 Hrs.]
	Mathematical functions and applications, user defined functions	s, plotting
	functions, curve fitting	
Unit 3:	Mathematical operations	[7 Hrs.]
	Integration and differentiation, symbolic expressions and algebra, File input	
	output operations	
Unit 4:	Introduction to SCILAB	[7 Hrs.]
Unit 5:	Introduction to SIMULINK	[7 Hrs.]
Unit 6:	Computer Implementation	[7 Hrs.]

- 1. Stephen Chapman: MATLAB for Engineers Thompson Publications
- 2. Steven C Chapra: Applied Numerical Methods with MATLAB TATA MCGRAW-HILL

[DEC] Bridge Engineering	
Teaching Scheme:	Examination Scheme:
Lectures: 3 hrs./week	T1 and T2 – 20 marks each
	End Sem. Exam – 60 marks

Course Outcomes: At the end of the course, the students are able to,

CO_1: Understand the IRC specifications and earthquake resistant design considerations

CO_2: Analyse the superstructure of slab, T-beam and box type bridges

CO_3: Design the superstructure of slab, T-beam and box type Bridges

CO_4: Analyse substructure- Piers, Abutments and their Foundations

CO_5: Analyse and design the type of bearings and understand the working of vibration control devices

Unit 1:		[7 Hrs.]
	Introduction, Classification and Types. IRC Specifications For Road	d Bridges.
	Earthquake Resistant Design Considerations.	
Unit 2:		[7 Hrs.]
	Analysis of Bridges - Effect of concentrated loads on slabs,	
	Load Distribution Theories - Courbon's method, Hendry-Jaeger m	ethod and
	Guyon- Massonet method.	
Unit 3:		[7 Hrs.]
	Design of PSC Bridges - Slab Type, T-beam Type, Box Type.	
Unit 4:		[7 Hrs.]
	Classification and Design of Bearings - Metallic bearings, Elastomeric	e bearings,
	POT and PTFE bearings.	
Unit 5:		[7 Hrs.]
	Analysis and Design of Abutment and Pier. Introduction to Design of C	Open Well,
	Pile and Caisson Foundations.	
Unit 6:		[7 Hrs.]
	Analysis and Design of Wing Walls.	

- 1. N. Krishna Raju, "Design of Bridges", Oxford and IBH Publishing Co. Ltd., New Delhi and Kolkata (2001)
- 2. T.R. Jagdeesh, M. A. Jayaram, "Design of Bridge Structures", Prentice Hall of India Pvt. Ltd., New Delhi (2003)
- 3. D. Johnson Victor, "Essentials of Bridge Engineering", Oxford and IBH Publishing Co. Ltd., 5th Edition, (2001)
- 4. M.J.N. Priestley, G. M. Calvi, "Seismic Design and Retrofit of Bridges"
- 5. IRC Codes -
 - IRC 6 (2014), Section II: Loads and Stresses.
 - IRC 78 (2000), Section VII: Foundations and Substructures
 - IRC 83 (1982), Section IX: Bearings, Part I: Metallic Bearings (1994)
 - IRC 83 (1987), Section IX: Bearings, Part II: Elastomeric Bearings (1994)
 - IRC 83 (1987), Section IX: Bearings, Part III: POT and PTFE Bearings (1994)

• IRC 112 (2012), Design Criteria for RCC and PSC Bridges

[DEC] Earthquake Analysis and Design of Structures		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Apply fundamentals of structural dynamics to different structures
CO_2: Apply clauses of IS1893 and IS13920 to RC buildings
CO_3: Analyse RC and Steel structural components for seismic considerations
CO_4: Design RC and steel Structural components from seismic and ductile detailing
considerations

CO_5: Analyse and design RC building on software

Unit 1:	FE modeling of vibration problems I	[7 Hrs.]
	Introduction, application of FEM for 2 D beam element, examples of	on portal
	frames	
Unit 2:	Frequency domain spectral analysis	[7 Hrs.]
	Introduction, stationary random process, Analysis of response in the fr	requency
	domain. Transform methods of analysis. Fourier series and Fourier	integral.
	Fourier series representation of a periodic function. Exponential form of	of Fourier
	series. Complex frequency response function. Response to non-period	dic load.
	Discrete Fourier transform. Fast Fourier transform. Complex Fourier	er series,
	frequency spectrum, frequency domain representations. Auto correlation	ation and
	cross correlation functions. Power Spectral Density Functions (PSDF) a	and cross
	power spectral density functions. Single input - single output (SISO)) system.
	PSDF matrix of member end forces. Modal spectral analysis. Spectral	analysis
	using state space formulation.	
Unit 3:	Wave propagation analysis	[7 Hrs.]
	Introduction, the phenomenon of wave propagation. Harmonic waves. I	I-D wave
	equation, propagation of waves in systems of finite extent. Reflect	tion and
	refraction of waves at a discontinuity in the system properties. Character	eristics of
	wave equation. Wave dispersion.	
Unit 4:	Nonlinear time history analysis	[7 Hrs.]
	State space method. Response of SDOF and MDOF systems with NL st	tiffness.
	Inelastic displacement and force analogy method. Response of SDOF and	
	MDOF systems using force- analogy method. Inelastic dynamic sta	ate space
	response.	

	Inelastic dynamic response with state space reduction	
Unit 5:	Seismic soil structure interaction	[7 Hrs.]
	Elements of soil dynamics, wave propagation through soil, one di	mensional
	wave propagation and ground response analysis. 2D response analysis in time	
	domain. Soil-pile interaction. Dynamics of soil-foundation systems	, dynamic
	interaction of rigid foundations and soil media, spring constants and damping	
	coefficients. Aseismic design of foundations. Combined pile and raft foundation.	
	Seismic analysis of buried structures.	
Unit 6:	Applications of structural dynamics	[7 Hrs.]
	Benchmark problems. Wind loading on structures, dynamic propertie	es of wind,
	response to turbulent buffeting, across wind response of slender struct	tures.
	Vibrations caused by traffic, blasting, pile driving. Human response to	vibrations.
	Types of structural control - application of passive dampers to	buildings.
	Response of offshore structures to wave loading	

- 1. 1. Anil K. Chopra, "Dynamics of Structures Theory and Applications to Earthquake. Engineering", Pearson, 3rd Edition, 2011
- 2. Gary Hart and Kevin Wong, "Structural Dynamics for Structural Engineers", John Wiley and Sons, 2000
- 3. J. W. Smith, "Vibration of Structures. Application in Civil Engineering Design", Chapman and Hall, 1988
- 4. Jagmohan L. Humar, "Dynamics of Structures", Prentice Hall, 1990
- 5. Mario Paz and William Leigh, "Structural Dynamics Theory and Computation, Updated with Sap 2000", 5th Edition, Kluwer Academic Publishers

[MLC] Research Methodology and Intellectual Property Rights		
Teaching Scheme:	Examination Scheme:	
Lectures: 2 hrs./week	Continuous Evaluation	
	Assignment/Presentation/Quiz/Test	

Course Outcomes: At the end of the course, the students are able to,

CO_1: Infer that tomorrow's world will be ruled by ideas, concept, and creativity

CO_2: Learn ethical practices to be followed in research and apply research methodology in case studies and acquire skills required for presentation of research outcomes

CO_3: Discover how IPR is regarded as a source of national wealth and mark of an economic leadership in context of global market scenario

CO_4: Study the National & International IP system

CO_5: Summarize that it is an incentive for further research work and investment in R & D, leading to creation of new and better products and generation of economic and social benefits

Unit 1:	[5 Hrs.]
	Meaning of research problem. Sources of research problem, Criteria
	Characteristics of a good research problem, Errors in selecting a research
	problem, Scope and objectives of research problem.
	Approaches of investigation of solutions for research problem, data collection,
	analysis, interpretation, necessary instrumentations.
Unit 2:	[5 Hrs.]
	Effective literature studies approaches, analysis
	Use Design of Experiments /Taguchi Method to plan a set of experiments or
	simulations or build prototype
	Analyze your results and draw conclusions or Build Prototype, Test and
	Redesign
Unit 3:	[5 Hrs.]
	Plagiarism, Research ethics
	Effective technical writing, how to write report, Paper.
	Developing a Research Proposal, Format of research proposal, a presentation and
	assessment by a review committee
Unit 4:	[4 Hrs.]
	Introduction to the concepts Property and Intellectual Property, Nature and
	Importance of Intellectual Property Rights, Objectives and Importance of
	understanding Intellectual Property Rights
Unit 5:	[7 Hrs.]
	Understanding the types of Intellectual Property Rights: -Patents-Indian Patent
	Office and its Administration, Administration of Patent System - Patenting under
	Indian Patent Act, Patent Rights and its Scope, Licensing and transfer of
	technology, Patent information and database. Provisional and Non Provisional
	Patent Application and Specification, Plant Patenting, Idea Patenting, Integrated
	Circuits, Industrial Designs, Irademarks (Registered and unregistered
	trademarks), Copyrights, Iraditional Knowledge, Geographical Indications,
II	Irade Secrets, Case Studies
Unit 6:	[4 Hrs.]
	new Developments in Irk, Process of Patenting and Development:
	Internological research, innovation, patenting, development,
	International Scenario: WIPO, IKIPS, Patenting under PCI

- 1. Aswani Kumar Bansal: Law of Trademarks in India
- 2. B L Wadehra: Law Relating to Patents, Trademarks, Copyright, Designs and Geographical Indications.
- 3. G.V.G Krishnamurthy: The Law of Trademarks, Copyright, Patents and Design.
- 4. Satyawrat Ponkse: The Management of Intellectual Property.
- 5. SK Roy Chaudhary & HK Saharay: The Law of Trademarks, Copyright, Patents
- 6. Intellectual Property Rights under WTO by T. Ramappa, S. Chand.
- 7. Manual of Patent Office Practice and Procedure
- 8. WIPO: WIPO Guide to Using Patent Information
- 9. Resisting Intellectual Property by Halbert, Taylor & Francis
- 10. Industrial Design by Mayall, Mc Graw Hill
- 11. Product Design by Niebel, Mc Graw Hill
- 12. Introduction to Design by Asimov, Prentice Hall
- 13. Intellectual Property in New Technological Age by Robert P. Merges, Peter S. Menell, Mark A. Lemley

[MLC] Effective Technical Communication		
Teaching Scheme:	Examination Scheme:	
Lectures: 1 hrs./week	4 Assignments – 25 marks each	
	Total – Marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Produce effective dialogue for business related situations
CO_2: Use listening, speaking, reading and writing skills for communication purposes and
attempt tasks by using functional grammar and vocabulary effectively
CO_3: Analyze critically different concepts / principles of communication skills
CO_4: Demonstrate productive skills and have a knack for structured conversations
CO_5: Appreciate, analyze, evaluate business reports and research papers

Unit 1:	Fundamentals of Communication	[4 Hrs.]
	7 Cs of communication, common errors in English, enriching vocabulary, styles	
	and registers	
Unit 2:	Aural-Oral Communication	[4 Hrs.]
	The art of listening, stress and intonation, group discussion, oral presentation	
	skill	
Unit 3:	Reading and Writing	[4 Hrs.]
	Types of reading, effective writing, business correspondence, interpr	retation of
	technical reports and research papers	

- 1. Raman Sharma, "Technical Communication", Oxford University Press.
- 2. Raymond Murphy "Essential English Grammar" (Elementary & Intermediate) Cambridge University Press.
- 3. Mark Hancock "English Pronunciation in Use" Cambridge University Press.
- 4. Shirley Taylor, "Model Business Letters, Emails and Other Business Documents" (seventh edition), Prentise Hall
- 5. Thomas Huckin, Leslie Olsen "Technical writing and Professional Communications for Non-native speakers of English", McGraw Hill.

[DEC] Non-Linear Analysis of Structures		
Teaching Scheme:	Examination Scheme:	
Lectures: 3 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Use numerical technique to solve nonlinear system of equilibrium equations.
CO_2: Develop geometric stiffness matrix for plane frame structures.
CO_3: Develop computer program for geometric non-linearity
CO_4: Analyze structures considering geometric as well a material non-linearity

Unit 1:	Introduction	[7 Hrs.]	
	Behaviour of idealized structures, linearized load-deformation behaviour of		
	structures, effect of axial load, rigid-plastic theory, fully plastic hinge moment,		
	load factor, proportional loading, virtual work equation, collapse mechanisms.		
Unit 2:	Non-Linear Analysis	[7 Hrs.]	
	Non-linear behaviour, sources of non-linearity, geometric stiffness matrix, axial		
	force member, combined bending and axial forces, combined torsion and axial		
	forces, three-dimensional geometric non-linear analysis		
Unit 3:	Solution of Non-Linear Equilibrium Equations	[7 Hrs.]	
	Incremental analysis, Euler Method, Runge-Kutta Methods, load	d Control	
	method, displacement control method, constant Arc-length method, convergence		
	criteria.		
Unit 4:	Program for Geometric Non-Linear Analysis	[7 Hrs.]	
	Development of computer program for Geometric non-linear analysis of plane-		
	frame structures. Solution of simple problems involving geometric non- linearity		
Unit 5:	Material Non-Linear Analysis	[7 Hrs.]	

	Nonlinear material behaviour, plasticity theory, plastic analysis, pla	stic hinge
	method for ductile frames, yield surface and plastic reduction matrix, spread of	
	plasticity, reinforced concrete members.	
Unit 6:	Non-Linear Analysis of Structures	[7 Hrs.]
	Analysis of framed structures for Geometric and material non-linearity.	

- 1. Madhu Kanchi, "Matrix Methods of Structural Analysis", New Age Publications, 2016
- 2. William McGuire, Richard Gallagher and Ronald Ziemian, "Matrix Structural Analysis", Bucknell Publications, 2000.
- 3. J.L. Meek, "Computer Methods in Structural Analysis", E&FN Spon, 1991.
- 4. 4. K. I. Majid, "Non-linear Structures", Butterworth, 1972.

[PCC] Finite Element Method		
Teaching Scheme:	Examination Scheme:	
Lectures: 4 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,		
CO_1: Formulate stiffness matrices for regular elements using shape functions		
CO_2: Solve Structural Engineering problems using one dimensional finite element.		
CO_3: Solve Structural Engineering problems using two dimensional elements.		
CO_4: Solve Structural Engineering problems using three dimensional elements.		
CO_5: Use the commercial software/computer programs for the analysis.		

Unit 1:		[7 Hrs.]
	Introduction History and applications. General steps of finite Element Method,	
	Concept of stiffness matrix and load vector. Application of boundary conditions.	
Unit 2:		[7 Hrs.]
	One dimensional Finite Element Analysis Bar elements, analysis of plane and	
	space trusses, beam element and analysis of beams.	
Unit 3:		[7 Hrs.]
	Two-dimensional Finite Element Analysis CST and LST elements for the	
	analysis of plane stress and plane strain problems, Rectangular and quadrilateral	
	elements for the analysis of plane stress and plane strain problems.	
Unit 4:		[7 Hrs.]

	Two-dimensional Finite Element Analysis Tetrahedral and hexahedral elements.	
	Analysis of Axi-Symmetric solids.	
Unit 5:		[7 Hrs.]
	Plate Bending and Flat Shell Elements The rectangular and qua	adrilateral
	elements based on Classical Plate Theory and First Order Shear De	formation
	Theory	
Unit 6:		[7 Hrs.]
	Computer implementation of FEM procedure Pre-processing, solut	ion, Post-
	processing, Use of commercial FEA software, development of	computer
	programs using one dimensional and two-dimensional elements.	

- 1. P. Seshu: Finite Element Analysis: Prentice-Hall of India.
- 2. A. D. Belegundu and T. R. Chandrupatla: Finite Element Methods in Engineering: Prentice-Hall of India
- 3. Y. M. Desai, T. 1. Eldho and A. H. Shah: Finite Element Method with Applications in Engineering: PEARSON
- 4. D. V Hutton: Fundamentals of Finite Element Analysis: TATA MCGRAW-HILL
- 5. 5. J. N. Reddy: An Introduction to Finite Element Method: TATA MCGRAW-HILL

[PCC] Theory of Thin Plates and Shells		
Teaching Scheme:	Examination Scheme:	
Lectures: 4 hrs./week	T1 and T2 – 20 marks each	
	End Sem. Exam – 60 marks	

Course Outcomes: At the end of the course, the students are able to,
CO_1: Understand the basic concepts of classical theory of thin plates
CO_2: Understand the basic concepts of classical theory of thin shells
CO_3: Solve problems based on thin plates and shells
CO_4: Solve the problems based on circular plates
CO_5: Understand the basic concepts of laminated composite plates

Unit 1:		[7 Hrs.]
	Introduction to Plate Theory, Assumptions made in the Poission-Kird	choff plate
	theory, Plate equation and behavior of thin plates in Cartesian coordin	nates
Unit 2:		[7 Hrs.]

	Analysis of Rectangular Plates Subjected to various loading, Navier's method of	
	solution for simply supported plates, Leavy's method of solution for plates un	nder
	different boundary conditions.	
Unit 3:	[7 H	rs.]
	Analysis of Circular Plates Circular plates, governing differential equation	n in
	Polar coordinates	
Unit 4:	[7 H	rs.]
	Theory of Surfaces Introduction to space curves and surfaces, shell surfaces	and
	characteristics, classifications of shells.	
Unit 5:	[7 H	rs.]
	Introduction to Shell Theory Basic concepts of the theory, equilibrium equat	ions
	in curvilinear coordinates, force displacement relations, Membrane analysis of	
	shells of revolution and cylindrical shells under different loads	
Unit 6:	[7 H	rs.]
	Introduction to classical theory of laminated plates, Assumptions made in	the
	analysis, Strain- displacement relations, Constitutive relations for lamina and	
	laminates, Equations of motion, Static Bending Analysis of laminates.	

- 1. J. N. Reddy: Theory and Analysis of Elastic Plates and Shells: CRC Press
- 2. H. Kraus: Thin Elastic Shells: John Wiley and Sons
- 3. S. Timoshenko and W. Krieger: Theory of plates and shells: McGraw Hill
- 4. J. N. Reddy: Mechanics of Laminated Composite Plates and Shells. CRC Press
- 5. C. Ugural: Stresses in Plates and Shells: Mc Graw Hill
- 6. 6. K. Chandrashekhara: Theory of Plates: Universities Press

[LC] Lab Practice III Experimental Concrete Technology

Teaching Scheme:

Examination Scheme:

Lectures: 3 hrs./week

Course Outcomes: At the end of the course, the students are able to,

CO_1: Design High strength, High Performance concrete mux (> M40 grade)

CO_2: Select and apply appropriate techniques to conduct experiments

CO_3: Function as team member for laboratory work

CO_4: Select suitable materials to control corrosion of RCC structures

CO_5: Suggest suitable concreting technique for various situations

Unit 1:	Advances in Concrete Technology	[Hrs.]	
	a) Mix design of Fiber Reinforced Concrete		
	b) Mix design of High Strength concrete (M60 and above), High Performance		
	Concrete		
Unit 2:	Tests for measuring Corrosion parameters using Electro- [Hrs.]		
	chemical methods		
	a) Open Circuit Potential		
	b) Linear Polarisation Resistance		
	c) Electrochemical Impedance Spectroscopy		
	d) Mott Schottky Test		
	e) Cyclic Polarisation test		
Unit 3:	Site visits demonstrating Special concreting methods	[Hrs.]	
	Vacuum dewatering-under water concrete, Temp controlled concrete for mass		
	concrete		

- 1. V. M. Malhotra and N. J. Cariano, "Handbook of Non-destructive Testing of Concrete", CRC Press, 2003
- 2. K. W. Day, J. Aldred and B. Hudson, "Concrete Mix Design, Quality Control and Specification", CRC Press, 2014

Semester III

	[SBC] Dissertation Phase-I	
Teaching Scheme:		Examination Scheme:

Course Outcomes: At the end of the course, the students are able to,

CO_1: Identify structural engineering problems reviewing available literature

CO_2: Identify appropriate techniques to analyze complex structural systems

CO_3: Demonstrate application of engineering principles through efficient handling of projects.

Unit 1:	The Project work will start in semester III, and should involve scientific research,
	design, collection and analysis of data, determining solutions and must bring out
	the individuals contribution. Dissertation-1 will have mid semester presentation
	and end semester presentation. Mid semester presentation will include
	identification of the problem based on the literature review on the topic referring
	to latest literature available. End semester presentation should be done along
	with the report on identification of topic for the work and the methodology
	adopted.

Semester IV

	[SBC] Dissertation Phase-II	
Teaching Scheme:		Examination Scheme:

Course Outcomes: At the end of the course, the students are able to,		
CO_1: Apply appropriate techniques and tools to solve complex structural problems		
CO_2: Exhibit good communication skill to the engineering community and society		
CO_3: Demonstrate professional ethics and work culture		

Unit 1:	Dissertation - II will be related to work on the topic identified in Dissertation - L
	Mid semester presentation, Continuous assessment. There will be pre submission
	seminar at the end of academic term. After the approval the student has to submit
	the detail report. Continuous assessment of Dissertation - I and Dissertation - 11
	will be monitored by the departmental committee.