
Page 1/30

Page 2/30

List of Abbreviations

Abbreviation Title

BS Basic Science Course
ESC Engineering Science Course
PCC Programme Core Course (PCC)
PEC Programme Elective Course (PEC)

OE/SE Open/School Elective (OE/SE) other than particular program

MD M Multidisciplinary Minor (MD M)

VSEC Vocational and Skill Enhancement Course (VSEC)

HSMC
Humanities Social Science and

Management
IKS Indian Knowledge System (IKS)
VEC Value Education Course (VEC)

RM Research Methodology (RM)

-- Internship
-- Project

CEA Community Engagement Activity (CEA)/Field Project

CCA Co-curricular & Extracurricular Activities (CCA)

Page 3/30

F.Y. B. Tech.
Computer Science and Engineering

 [Level 4.5, UG Certificate] Semester -I

Sr.

No.

Co

urs

e
Typ

e

Cours

e
Code

Course Name L T P S Cr

Evaluation Scheme
(Weightages in %)

Theory Laborator

y

MSE TA ESE ISE ESE

01 BSC <tbd> Engineering Physics 2 0 2 1 3 30 20 50 CIE: 100

02 BSC <tbd> Linear Algebra 2 1 0 1 3 30 10 60 -- --

03 BSC <tbd> Biology for Engineers 2 0 0 1 2 30 20 50 -- --

04 ESC <tbd>
Basic Electrical &

Electronics Engineering 2 0 2 1 3 30 20 50 CIE: 100

05 ESC <tbd>
Problem Solving using
Procedural

Programming
3 0 2 1 4 30 20 50 CIE: 100

06 ESC <tbd> Computer Lab 0 0 4 0 2 -- -- -- CIE: 100

07 AEC <tbd> IKS 2 0 0 0 2 CIE: 100 -- --

08 CCA <tbd> Liberal Learning -1 0 0 2 0 1 -- -- -- CIE: 100

Total 13 01 12 05 20

[Level 4.5, UG Certificate] Semester -II

Sr.

No.

Co

urs
e

Ty
pe

Cours
e

Code

Course Name L T P S Cr

Evaluation Scheme

(Weightages in %)

Theory Laborator
y

MSE TA ESE ISE ESE

01 BSC <tbd> Probability and Statistics 2 0 2 1 3 30 20 50 CIE: 100

02 BSC <tbd> Quantum Physics 2 0 2 1 3 30 20 50 CIE: 100

03 ESC <tbd> Digital Logic Design 3 0 2 1 4 30 20 50 CIE: 100

04 ESC <tbd>
Engineering Graphics

and Design 1 0 4 1 3 CIE: 100 CIE: 100

05 PCC <tbd> Discrete Structures 2 0 0 1 2 30 20 50 -- --

06
VSE

C
<tbd> Web Design 1 0 2 1 2 CIE: 100 CIE: 100

07 IKS <tbd> Communication Skills 2 0 0 0 2 CIE: 100 -- --

08 CCA <tbd> Liberal Learning -2 0 0 2 0 1 -- -- -- CIE: 100

Total 13 00 12 06 20

Legends: L-Lecture, T-Tutorial, P-Practical, S-Self Study, Cr-Credits

ISE-In-Semester-Evaluation, ESE-End-Semester-Evaluation , MSE-Mid-Semester
Evaluation, TA-Teachers’ Assessment, CIE-Continuous-Internal-Evaluation

Exit option to qualify for Certification: 2 Courses on Web Technologies

Page 4/30

S.Y. B. Tech.
Computer Science and Engineering

 [Level 5, UG Diploma] Semester -III

Sr.

No.

Co

urs
e

Typ

e

Cours
e

Code

Course Name L T P S Cr

Evaluation Scheme
(Weightages in %)

Theory Laborator

y

MSE TA ESE ISE ESE

01 PCC <tbd> Microprocessors 3 0 2 1 4 30 10 60 CIE: 100

02 PCC <tbd>

Principles of

Programming
Languages

3 0 0 1 3 30 10 60 -- --

03 PCC <tbd>
Data Structures and

Algorithms
3 0 2 1 4 30 10 60 CIE: 100

04 OE <tbd> Open Elective-1 2 0 0 1 2 30 20 50 -- --

05 AEC <tbd> Indian language 2 0 0 0 2 CIE: 100 -- --

06 VEC <tbd> Environment Studies 2 0 0 0 2 CIE: 100 -- --

07 CEA <tbd>
Community
Engagement Activity

(CEA)/Field Project

-- -- -- 0 2 -- -- CIE: 100

08
HS
MC

<tbd> Entrepreneurship 2 0 0 0 2 CIE: 100 -- --

Total 17 00 04 04 21

[Level 5, UG Diploma] Semester -IV

Sr.

No.

Co

urs

e
Typ

e

Cours

e
Code

Course Name L T P S Cr

Evaluation Scheme

(Weightages in %)

Theory Laboratory

MSE TA ESE ISE ESE

01 PCC <tbd>
Object Oriented
Programming & Design

3 0 2 1 4 30 10 60 CIE: 100

02 PCC <tbd> Computer Organization 3 0 0 1 3 30 10 60 -- --

03 PCC <tbd> Theory of Computation 2 1 0 1 3 30 10 60 -- --

04 VEC <tbd> Constitution of India 2 0 0 0 2 CIE: 100 -- --

05
HS

MC
<tbd> Economics 2 0 0 0 2 CIE: 100 -- --

06 OE <tbd> Open Elective-2 2 0 0 1 2 30 20 50 -- --

07
VSE
C

<tbd>
Development Tools
Laboratory

0 0 2 0 1 -- -- CIE: 100

08
MD

M
<tbd> Multidisciplinary Minor-1 3 0 0 1 3 30 10 60 -- --

Total 18 00 04 04 20

Page 5/30

T.Y. B. Tech.
Computer Science and Engineering

 [Level 4.5, UG Certificate] Semester -V

Sr.

No.

Co

urs
e

Typ

e

Cours
e

Code

Course Name L T P S Cr

Evaluation Scheme
(Weightages in %)

Theory Laboratory

MSE TA ES
E

ISE ESE

01 PCC <tbd>
Design and Analysis of

Algorithms
3 0 2 1 4 30 10 60 CIE: 100

02 PCC <tbd> Computer Networks 3 0 2 1 4 30 10 60 CIE: 100

03 PCC <tbd> Operating Systems 3 0 2 1 4 30 10 60 CIE: 100

04 PEC <tbd> DE-1 3 0 0 1 3 CIE: 100 -- --

05 OE <tbd> Open Elective-3 2 0 0 1 2 30 20 50 -- --

06 OJT <tbd> Internship -- -- -- 0 3 -- -- -- CIE: 100

07
MD
M

<tbd> Multidisciplinary Minor-2 4 0 0 1 4 30 10 60 -- --

Total 18 00 06 06 24

[Level 4.5, UG Certificate] Semester -VI

Sr.
No.

Co
urs

e
Typ

e

Cours

e
Code

Course Name L T P S Cr

Evaluation Scheme
(Weightages in %)

Theory Laboratory

MSE TA ESE ISE ESE

01 PCC <tbd>
Database Management
Systems

3 0 2 1 4 30 10 60 CIE: 100

02 PCC <tbd> Artificial Intelligence 3 0 2 1 4 30 10 60 CIE: 100

03 PCC <tbd>
Cryptography and

Network Security
3 0 0 1 3 30 10 60 -- --

04 PCC <tbd> DE-2 3 0 2 1 4 30 10 60 CIE: 100

05
VSE

C
<tbd>

Full stack development
/ Devops / Automation

Testing
0 0 4 0 2 -- -- -- CIE: 100

06
MD
M

<tbd> Multidisciplinary Minor-3 4 0 0 1 4 30 10 60 -- --

Total 16 00 10 05 21

Exit option to qualify for B.Voc.: Mini Project / Internship

Page 6/30

Final Year B. Tech.
Computer Science and Engineering

 [Level 4.5, UG Certificate] Semester -VII

Sr.

No.

Co

urs
e

Typ

e

Cours
e

Code

Course Name L T P S Cr

Evaluation Scheme
(Weightages in %)

Theory Laborator

y

MSE TA ESE ISE ESE

01 PCC <tbd> Compiler Construction 3 0 2 1 4 30 10 60 CIE: 100

02 PCC <tbd> Software Engineering 3 0 2 1 4 30 10 60 CIE: 100

03 PEC <tbd> DE-3 3 0 0 1 3 30 10 60 -- --

04 PEC <tbd> DE-4 3 0 0 1 3 30 10 60 -- --

05 RM <tbd> Research Methodology 2 0 0 0 2 CIE: 100 -- --

06 OJT <tbd> Internship - - - - 3 -- -- -- CIE: 100

07
MD
M

<tbd> Multidisciplinary Minor-4 3 0 0 1 3 30 10 60 -- --

Total 18 00 04 05 22

[Level 4.5, UG Certificate] Semester -VIII

Sr.

No.

Co

urs
e

Typ

e

Cours
e

Code

Course Name L T P S Cr

Evaluation Scheme

(Weightages in %)

Theory Laboratory

MSE TA ESE ISE ESE

01 PEC <tbd> DE-5 3 0 0 1 3 30 10 60 -- --

02 PEC <tbd> DE-6 3 0 0 1 3 30 10 60 -- --

03

OJT

/VS

EC

<tbd> Internship/ Project - - - - 6 CIE: 100

Total 18 00 04 05 23

MULTIDISCIPLINARY MINORS

Semester
Course

Code
Course Title L T P Cr

IV MD M-01 Data Structures, Files and Algorithms 3 0 0 3

V MD M-02 Object Oriented Programming 4 0 0 4

VI MD M-03
Fundamentals of Database Management

Systems
4 0 0 4

VII MD M-04 Fundamentals of Data Science 3 0 0 3

Total 14

Page 7/30

OPEN ELECTIVES LIST

(offered to other departments)

Semester
Course

Code
Course Title L T P Cr

III OE-01 Data Analytics 2 0 0 2

IV OE-02
Fundamentals of Operating Systems/

Fundamentals of Algorithms
2 0 0 2

V OE-03 Fundamentals of Machine Learning 2 0 0 2

Total 6

DEPARTMENT ELECTIVES

 DE-1 DE-2 DE-3 DE-4 DE-5 DE-6

Tracks Sem-5 Sem-6 Sem-7 Sem-7 Sem-8 Sem-8

System

Software/

Hardware

Cloud

Computing

PCAP:

Parallel

Computer

Architecture

and

Programming

POSIX

programming

SA: System

Administration

GPU

Computing

MT: Multicore

Technology

ADBMS:

Advanced

Database

Management

Systems

ES: Embedded

Systems

DS:

Distributed

Systems

S&V: Storage

and

Virtualization

Networking

and Security

MAN: Mobile

and Ad-hoc

Networks

Remote

Sensing

BCT:

BlockChain

Technologies

GIS

IOT: Internet

of Things

DS:

Distributed

Systems

CFLP:

Computer

Forensics and

Data Recovery

CS: Cyber

Security

Artificial

Intelligence
Data-Science

ML: Machine

Learning

Data

Visualization

Techniques

NLP: Natural

Language

Processing

DL: Deep

Learning
Generative AI

Algorithms

and

Programming

ADS:

Advanced

Data

Structures

FP: Functional

Programming

OOMD:

Object

Oriented

Modeling and

Design

Parallel

Algorithms

G&M:

Graphics and

Multimedia

SDP: Software

Design

Patterns

Page 8/30

(PCC-02) Microprocessors

Teaching Scheme Evaluation Scheme

Lectures: 3 Hrs/ Week
Labs: 2Hr. / Week
Self Study: 1 Hour/week

Theory: MES:30 Marks, TA:10 Marks ESE:60
Marks
Laboratory: CIE:100 Marks

Course Outcomes

Upon completion of this course students will be able to:

1. Design a microcomputer around 8086b CPU in minimum mode
2. Explain importance of power on reset circuit in the microcomputer
3. Develop assembly language programs for 8086 CPU
4. Explain and write programs for dedicated interrupts (Break Point, Overflow) of 8086
5. Design and Test interfacing of 8255, 8279, 8259, 8251,DMA and interfacing of 8237 to

8086
6. Design maximum mode CPU module for coprocessor configuration and multiprocessor

system for local bus and system bus

Course Contents

Design of Microcomputer: Von Pneumann’s Principle, 8086 Architecture, Advantages of
pipelining and segmentation, Simultaneityand concurrency, Demultiplexing of address and
data bus, ALE, Even and Odd Bank, BHE, Static memory organisation, Design of memory
map, Design of Interfacing of static memory to 8086.Reset in, Power on Reset Circuit, Bus
cycle, Instruction cycle, Organising program for Basic Input Output System or Boot Strap
loader after reset, clock input, 8284 clock driver, Design of minimum mode CPU module.

[8 Hrs]
Programming with 8086: Programming modelof 8086,Physical Address, Segment
Address and Logical address/offset, Addressing modes, Instruction codes, default segment
assignment, Instruction Groups, Flags, Important instructions of the group, flags, prefixes.
Programming in Assembly Language of 8086. I/O interfacing. I/O mapped I/O versus
Memory mapped I/O. In and OUT. Interfacing of 8 bit input port and outport in I/O mapped
I/O mode. Disadvantage of memory mapped I/O in design of multitasking Microcomputer.
 [8 Hrs]

Interrupts: Interrupt structure of 8086, Dedicated Interrupts, flags associated with
interrupts, hardware interrupts, non vectoredinterrupt, INTR and INTA, Software Interrupts

[4 Hrs]

I/O Interafcing: Program driven data transfer versus Interrupt driven data transfer,
Interfacing design and demonstrating modes of 8255, simple I/o, Strobed input and output,
bidirectional strobed I/O, BSR, 8279, encoded and decoded scan, 2 key lockout and N key
rollover, sensor matrix, strobed keyboard, 8259, EOI, Non specific and specific EOI, Priority
structure, Initialisation and Operational Command words, cascaded mode, buffered and non
buffered [6 Hrs]

Page 9/30

Serial Communication, DMA mode: Serial I/O, Asynchronous and synchronous mode,
design of serial communication using 8251 USART and RS232C drivers, Direct Memory
Access and Interfacing of 8237 [4 Hrs]

Multiprocessing in 8086: Design of maximum mode CPU module, 8288 bus controller
and 8289 bus arbiter, coprocessor configuration, Introduction to NDP8087, Resident Bus and
System bus, loosely coupled and closely coupled configuration. Protected mode of 80286
for improved memory management and task switching for multiprogramming or multitasking,
PVAM, Register set, segment descriptors, selector, virtual address space, single level and
multiple level tasks, cache memory and its management [8 Hrs]

Self Study Unit:

• Emu86 or suitable assembler, Study of assembler directives, Instruction templates,
No. of Bus cycles and clock cycles for execution of instructions, All instructions of
8086, Prefixes, Programming practice in assembly language of 8086,

• Function calls of DOS and BIOS Interrupts for display and keyboard of IBM PC
• Interfacing and programming for 4x4 keymatrix and 4 seven segment multiplexed

displays to 8255
[8 Hrs]

Note:

• All the Course outcomes 1 to 3 will be judged by 75% of the questions and outcomes 4, 5 and 6

will be judged by 25 % of questions.

• To measure CO3 and CO4, some questions may be based on self-study topics

Text Book:

John P Uffenbeck, The 8086/8088 Family Design, Programming and Interfacing, PHI

Reference Books

Yu-Cheng Liu, Glenn A. Gibson, Microcomputer Systems: The 8086/8088 family Architecture,

Programming and Design II Edition

Page 10/30

Principles of Programming Languages

Teaching Scheme Evaluation Scheme

Lectures: 2Hrs/ Week

Theory: MES:30 Marks, TA:10 Marks ESE:60
Marks

Course Outcomes

Students will be able to:

1. Explain, compare and discuss different language translation mechanisms.
2. Explain fundamental concepts of different programming paradigms.
3. Discuss and analyze factors that impact implementation of different programming language

concepts and tradeoffs involved.
4. Demonstrate ability to write simple programs using exception handling and event driven

programming concepts.
5. Suggest a suitable programming paradigm for a given problem.
6. Implement the solution for a given problem using different programming paradigms.

Course Contents

Preliminaries: Reasons for Studying Concepts of Programming Languages. Programming

Domains. Language Evaluation Criteria. Influences on Language Design: computer architecture.

Language Categories. Language Design Trade-Offs

[5 Hrs]

Implementation Methods :Compilation, Interpretation, Hybrid Implementation, Preprocessors.

Programming Environments. Evolution of the Major Programming Languages (Pseudocodes,

Assemby, C, C++, FORTRAN, Java). Introduction to assembly language instructions.

[5 Hrs]

Syntax and Semantics Lexical and Syntax Analysis. Names, Bindings, and Scopes, Type

checking, Strong Typing. Type Conversions. Short-Circuit Evaluation

[8 Hrs]

Statement-Level Control Structures Subprograms: Introduction. Fundamentals of

Subprograms. Design Issues for Subprograms. Local Referencing Environments. Parameter-

Passing Methods

 [6 Hrs]

Exception Handling: Basic Concepts. Design Issues. Exception Handlers . Binding Exceptions to

Handlers. Event Handling:Basic Concepts. Event handling with Programming Language.

Comparison of Exception handling & Event Handling. GUI development

[6 Hrs]

Page 11/30

Programming Paradigms:

Introduction to Logic Programming. Introduction. Applications of Logic

Programming.Introduction to Functional Programming. Introduction. Introduction to LISP.

Garbage Collection Algorithms. A Comparison of Functional and Imperative Languages.

Introduction to Procedural Programming. Introduction to Object Oriented Programing

[10Hrs]

Self Study topics:
Python as a multi-paradigm language for functional and logic programming. Case study of Ada,
PERL, Go and Ruby for their features. Comparison of efficiency of compiled and interpreted
languages in the form of assignments.

[12 Hrs]

Suggested List of Assignments:

1. Compile a C program with gcc with various options like -S, --save-temps. List the various
temporary files and the meaning of their contents.

2. Use objdump to read the object file of a C program and demonstrate how a stack frame is
built and destroyed.

3. Use gdb to read assembly code for C program to find factorial of a number with recursion
and demonstrate how parameters are passed using pass by value.

4. Explain how pass by reference works, using assembly code generated using g++ -S on a
C++ program.

5. Write a program to raise an exception and handle it.
6. Write a function in LISP to find nth element from a list of m elements.
7. Implement a decision support system for course tracking at a institute using PROLOG. A

course is floated by a teacher from a particular department. Various students will enroll a
course. Single student can enroll for multiple courses (maximum five per course) provided
the student clears the prerequisite courses. A teacher can teach at the most two courses in
a semester.

8. Demonstrate how a program, for example on to find the n’th element of a list, can be
written differently using procedural, object-oriented, logic and functional programming
approaches.

Text Books

• Scbesta R., "Concepts Of Programming Languages", 4th Edition, Pearson Education, ISBN-
81-7808-161-X

• T. W. Pratt , "Programming Languages", 4th Edition ,Prentice-Hall Of India, ISBN

9780130287199.

Reference Books

• Ghezzi C, Milano P., Jazayeri M., "Programming Languages Concepts", 3rd Edition, John Wiley
and Sons Pvt. Ltd (WSE), ISBN - 0195113063

• Michael L. Scott “Programming Language Pragmatics”, ELSEVIER Publication, ISBN: 81-
8147-370-1

• Roosta S., "Foundations of Programming Languages", Thomson, Brooke/Cole, ISBN 981-
243-141-1

• Sethi R., "Programming Languages concepts & constructs", 2nd Edition, Pearson Education,
ISBN 81 - 7808 - 104 – 0

Page 12/30

(PCC-04) Data Structures and Algorithms

Teaching Scheme Evaluation Scheme

Lectures: 3Hrs/ Week
Labs: 2 Hr. / Week

Theory: MES:30 Marks, TA:10 Marks ESE:60
Marks
Laboratory: CIE:100 Marks

Course Outcomes

Students will be able to:
1. Understand the fundamental concepts of various data structures (e.g., arrays, linked lists, stacks,
queues, trees, graphs, hash tables).
2. Understand the concepts of linear and non-linear data structure and their representation
3. Demonstrate the ability to write abstract data types and the use of basic data structures in solving
problems.
4. Discuss, compare and implement algorithms for various operations in different implementations
of stacks and queues, tree, graph, matrices, heap, etc.
5. Analyze the time complexity of different searching, sorting, and traversal algorithms.

Course Contents

Unit-1 Fundamental Concepts [6 Hrs]

Introduction to Data Structures: Data, Data Object, Data types, Abstract Data Types (ADT), Data

structures, Concept of primitive and non-primitive , linear and non-linear data structures.

Introduction to Algorithms: Definition and Characteristics of an algorithm, Algorithm Specification,

Performance Analysis- Time and space complexity, Asymptotic notations, Best, Average and worst

cases.

Introduction to Data representation and files: Text and binary files, use of various libraries for

handling files.

Unit 2: Linear Data Structures and their storage representation [6hrs]

Features of Linear Data Structures, Array as ADT, List as ADT, Concept of linked linear list,

Operations on linked linear list, Singly linked list, doubly linked list, circular linked list. Application

of linked linear list- Polynomial manipulations, linked dictionary.

Unit 3: Linear Data Structures: Stacks and Queues [8 Hrs]

Stack and queue as ADT, Operations on stack and queue. Implementations using arrays and linked

list. Application of stack for expression conversion and evaluation, Recursion. Problems like maze

and knight's tours

Unit 4: Non-Linear Data Structures: Trees [8 hrs]

Concept of Non-Linear Data Structures, Tree: Basic terminology, representation of trees, Binary Tree:

ADT Binary trees, Properties of a Binary Tree and its representations, Binary tree traversals –Inorder,

preorder, postorder (recursive and non-recursive) and various operations. Binary Search Tree

(BST):Definition, searching a BST, Operations of Insertion and deletion on BST,. Heaps: Priority

queues, Max and Min Heap, Operations on heap

Page 13/30

Unit 5: Non-Linear Data Structures: Graphs [6 hrs]

Graph ADT, Representation of graphs using adjacency matrix, adjacency list, Elementary graph

operations- Breadth First Search(BFS), Depth First Search(DFS), Analysis of BFS and DFS

Spanning Trees- Introduction, obtaining minimum cost spanning tree using greedy design strategy of

Prim's and Kruskal's algorithms, Single source shortest paths using Djkstra's algorithm.

Unit-6 Searching and Sorting [6 hrs]

Linear and binary search algorithm and their analysis. Bubble Sort, Selection sort, Insertion Sort,

Quick Sort, Heapsort with time complexity analysis.

Hashing: hashing functions, chaining, overflow handling with and without chaining, open addressing:

linear and quadratic probing.

Text Books

1. E. Horowitz, S. Sahni, S.Anderson-freed, “Fundamentals of Data Structures in C”, Second
Edition, University Press, ISBN 978-81-7371-605-8

2. B. Kernighan, D. Ritchie, “The C Programming Language”, Prentice Hall of India, Second
Edition, ISBN 81-203-0596-5

3. Y. Langsam, M. Augenstin and A. Tannenbaum, “Data Structures using C”, Pearson Education
Asia, First Edition, 2002, ISBN 978-81-317-0229-1

Reference Books

1. Ellis Horowitz, S. Sahni, D. Mehta “Fundamentals of Data Structures in C++”, Galgotia Book
Source, New Delhi 1995 ISBN 16782928

2. Jean-Paul Tremblay, Paul. G. Sorensan, “An introduction to data structures with
Applications”, Tata Mc-Graw Hill International Editions, 2nd edition 1984, ISBN-0-07-
462471-7

Suggested List of Assignments:

1. Write a program to remove duplicate doubles from an array of doubles. In the program,

write a function which accepts an array of doubles and removes the duplicates from the

array and has return type void.

2. Compare the time complexity of two sorting algorithms, by following the given steps.

Create a set of data files with count of integers varying into thousands and millions. Sort

the files using both the algorithms. Plot graph of the time taken by both the programs

using tool like gnuplot. Compare the graphs and comment on the time complexity

theoretically predicted and practically observed.

3. Write a function which evaluates an infix expression, without converting it to postfix. The

input string can have spaces, (,) and precedence of operators should be handled.

4. Implement a queue (that is write queue.c and queue.h only) of characters, such that on

an enqueue, the char is added at the end of queue, and on a dequeue the first element is

taken out, but the queue uses only a 'head' pointer and not a 'tail pointer.

5. Write an data type called "Integer". The data type should represent integers of unlimited

length.

6. Write a sorting program with the following features: Reads data from a text file and sorts it

alphabetically by default. If the file has data in rows and columns (separated by space or

Page 14/30

tab) then allows sorting on a particular column. Allows any sort using numeric or

alphbetical ordering.

7. Write the following functions for a binary search tree implementation: Searches the

maximum value in the tree, preorder traversal without using recursion, Search the string in

the tree and returns a pointer to the node, print the binary tree so that it looks like a tree.

8. Write code to list leaf nodes, non-leaf nodes and level of all nodes in a given binary tree.

9. Write a code for level order traversal of a binary tree with and without stack.

10. Start with an empty AVL tree and perform series of insertions like : December, January,

April, March, July, August, October, February, November, May, June. Display the tree.

11. Implement a sparse matrix with operations like initialize empty sparse matrix, insert an

element, sort a sparse matrix on row-column, add two matrices and return the result as a

matrix, transpose a matrix, etc.

12. Develop C functions to insert and delete into/from a max heap under the assumption that a

dynamically allocated array is used, the initial capacity of this array is 1, and array doubling

is done whenever we are to insert into a max heap that is full.

13. Implement Heap sort algorithm on a set of records, with a specified key.

14. Write a graph implementation, using adjacency lists and demonstrate Djkstra’s algorithm

on it.

15. Write a program to read a map stored in a text file with (city1, city2, distance) comma

separated values. Build a graph using this data. Print all pairs shortest paths information

between all pairs of cities.

16. Implement DFS and BFS on a Graph.

17. Write a program to find all connected components of a Graph, on a map specified in a text

file as Source, Destination, distance comma separated values.

18. Develop a hash table implementation in which overflows are resolved using chaining. Read

a set of records from a file, insert them into hash table, then perform a set of searches

using use supplied data and show the search results.

19. Implement a dictionary using a sparse matrix data structure.

eMini-project: Write an application of your own demonstration your skills in defining a problem,

writing down the requirements carefully, designing a modular solution with clear separation of

abstract data types and their use, design of proper function prototypes and division of work among

functions. The application can be a unix command re-implemented (e.g. cut, find, tar, fdupes, bc,

etc.), reimplementation of C library functions, memory allocator, a simple game using libraries like

n-curses or SDL, games like sudoku or chess, or an application to manage institutions like

hospitals, colleges, shops, etc.

Text Books

• E. Horowitz, S. Sahni, S.Anderson-freed, “Fundamentals of Data Structures in C”, Second
Edition, University Press, ISBN 978-81-7371-605-8

• B. Kernighan, D. Ritchie, “The C Programming Language”, Prentice Hall of India, Second
Edition, ISBN 81-203-0596-5

• Y. Langsam, M. Augenstin and A. Tannenbaum, “Data Structures using C”, Pearson Education
Asia, First Edition, 2002, ISBN 978-81-317-0229-1

Reference Books

Page 15/30

• Ellis Horowitz, S. Sahni, D. Mehta “Fundamentals of Data Structures in C++”, Galgotia Book
Source, New Delhi 1995 ISBN 16782928

• Jean-Paul Tremblay, Paul. G. Soresan, “An introduction to data structures with Applications”,
Tata Mc-Graw Hill International Editions, 2nd edition 1984, ISBN-0-07-462471-7

(OE-01) Data Analytics

Teaching Scheme Evaluation Scheme

Lectures: 2Hrs/ Week

Theory : CIE:100 Marks

Course Outcomes

Students will be able to:

1. Know basics of Data Analytics, people associated with it, roles and responsibilities to be
an data Analyst.

2. Learn and apply how to interpret data in Python using multi-dimensional arrays in
NumPy.

3. Learn and apply to manipulate DataFrames in Pandas.
4. Apply visualization libraries in Python like Matplotlib and Seaborn to gain insight of

dataset.
5. Learn latest data analytics tools excel, Plotly, Power BI, Tableau.

Course Contents

Introduction to Data Analytics: Introduction to Data Analytics, Need of data Analytics, types of
data analytics, Challenges, different types of data, data sources, data collection, data integration,
data wrangling, role of Data Engineers, Data Analysts, Data Scientists, Business Analysts, and
Business Intelligence Analysts, roles, responsibilities and skill sets required to be a Data Analyst.

 [6 Hrs]

Introduction to Python Libraries-NumPy: Installation, Basic operation: Arithmetic, Matrix
Product, Increment, Decrement, Aggregate function, Indexing, Slicing and Iterating an array,
Conditions and Boolean Arrays, Shape manipulations, Array manipulation – multidimensional array
 [6 Hrs]
Pandas Library: Installation of Pandas, Testing pandas installation, Introduction to pandas data
structure- the series, data frame, Index objects, other functionalities on Indexes-Reindexing,
Dropping, Operations on DataFrame and Series- merging, combining, pivoting, removing, data
transformation, Data aggregation, Reading and writing data to CSV file, random sampling, group
iteration.

[7 Hrs]
Data Visualization with Matplotlib and Seaborn libraries:Pyplot, plotting window, adding
elements to chart- text, grid, legend, saving charts, Handling data values, Line chart, Histogram, Bar
chart, pie chart, scatter plot, box plot, heat map.

[7 Hrs]

Page 16/30

[Self Study]
Tools for Data Analytics:Introduction to data analytics tools,collection of maps, diagrams, charts
designed to gather, interpret, and visualize data across diverse applications, how to Choose the right
data analysis tool, data visualization with different free open source tools. [12 Hrs]

Text Books

• Fabio Nelli, “Python Data Analytics with Pandas, Numpy and Matplotlib”, ISBN: 978-1-4842-
3913-1, DOI: 10.1007/978-1-4842-3913-1, Publisher: Apress,Year: 2018

• Bharti Motwani, “Data Analytics using Python “, Publisher: Wiley, ISBN: 8126502959

Reference Books

• Vincent Granville, “Developing Analytic Talent -Becoming a Data Scientist”, Publisher: Wiley,
2014, ISBN: 9781118810095.

• Glenn J. Myatt, Wayne Johnson, “Making Sense of Data I”, Second Edition, Publisher: Wiley,
ISBN 978-1-118-40741-7

• Glenn J. Myatt, Wayne Johnson, “Making Sense of Data II”, Publisher: Wiley, ISBN 978-0-
470-22280-5

Page 17/30

(PCC-05) Object Oriented Programming & Design

Course Outcomes

 Students will be able to:

1. Design a class hierarchy using object oriented thinking for a given problem.
2. Create object oriented application code for a given problem.
3. Write small pieces of code demonstrating various object oriented programming concepts.
4. Compare, annotate, and comment on various object oriented programming concepts.
5. Demonstrate ability to write concurrent programs for given problems.
6. Apply different UML diagrams for given problems.

Course Contents

Introduction: Various programming paradigms: Procedural, object-oriented, logic and functional,
concurrent programming. Classes, Objects, Methods; Data types provided by OO languages; Abstract
Data Types;
 [8 Hrs]
Abstraction Mechanisms: Encapsulation; Constructors, Destructors; Polymorphism; Access
specification: Private, public, protected members;

[8 Hrs]
Inheritance: Types of inheritance: single, multilevel, multiple, hierarchical and hybrid; Class
hierarchies; Virtual Functions; Virtual Base class;

[6 Hrs]
Standard Libraries: Templates; Generic Programming using generic function and 6class;
Packages; Interfaces. Iterators; Containers.

[6 Hrs]
Exception Handling & Multi-Threaded Programming: Exception handling, Exception
types ,Concurrent Programming, Basic Concepts of Concurrent Programming, Threads.

 [6 Hrs]

Introduction to OOAD : Unified Process – UML diagram ,use case ,class diagrams ,interaction
diagrams ,state diagrams – activity diagrams – package ,component and deployment diagrams.
Design: Unified Modelling language; use case diagrams; Class Diagrams;

 [6 Hrs]

(Self Study Unit)
Design Patterns: Introduction to Design Patterns, Types of Design Patterns, Application on various
design patterns.
 [12 Hrs]

Teaching Scheme: Examination Scheme:
Lectures: 3 Hr/week
Practical:2Hr/week

Theory: MES:30 Marks, TA:10 Marks
ESE:60 Marks
Laboratory: CIE:100 Marks

Page 18/30

Suggested List of Assignments

This is only a suggestive list. Instructor is encouraged to update the list of assignments

and projects. The purpose of the assignments should be to lead to a meaningful project.

The students should be encouraged to build different projects.

1. Define a class to represent a bank account. Include the following details like name of

the depositor, account number, type of account, balance amount in the account. Write

methods to assign initial values, to deposit an amount, withdraw an amount after checking

the balance, to display name, account number, account type and balance.

2. Write a program to implement following. Create a base class called person consisting

of name and code. Create 2 child classes a. Account with member pay and b. Admin with

experience and inherit the base class. Create a class Employee with name, code, experience

and pay by inheriting the above class.

a. Write Python script to display

b. Current date and time,

c. Current year,

d. Month of year,

e. Week number of the year,

f. Weekend of the week,

g. Day of year,

h. Day of the month and Day of week.

3. Write a program that has an abstract class Polygon. Derive two classes Rectangle and Triangle

from Polygon and write methods to get details of their dimensions hence calculate the area.

4. Write a menu driven to read, add, subtract, multiply, divide and transpose two matrices.

5. Write a program that has a class TIME. Enter the time when a user started an online test and

completed the test. Subtract the two-time values and display the duration in which the test

was completed. Throw exceptions whenever need arises (like invalid data, or if start time is

greater than completion time).

6. Construct a class diagram for a geometrical document. Add at least 10 relationships

(associations and generalizations). Use associations and association end names whereever

required. Also use qualified associations and show multiplicity. You do not need to show

attributes or operations. As you prepare the diagrams, you may add classes. Be sure to explain

your diagrams.

7. Scenario: An extension ladder has a rope, pulley, and latch for raising, lowering, and locking

the ex-tension. When the latch is locked, the extension is mechanically supported and you may

safely climb the ladder. To release the latch, you raise the extension slightly with the rope. You

Page 19/30

may then freely raise or lower the extension. The latch produces a clacking sound as it passes

over rungs of the ladder. The latch may be reengaged while raising the extension by reversing

direction just as the latch is passing a rung. Construct a state diagram of an extension ladder.

8. Draw a Scenario: A hockey league is made up of at least four hockey teams. Each hockey team

is composed of six to twelve players, and one player captains the team. A team has a name

and a record. Players have a number and a position. Hockey teams play games against each

other. Each game has a score and a location. Teams are sometimes lead by a coach. A coach

has a level of accreditation and a number of years of experience, and can coach multiple teams.

Coaches and players are people, and people have names and addresses. Construct a UML Class

Diagram representing the above problem domain for a hockey league.

 Text Books

• Cay S Horstmann and Gary Cornell, Core Java Vol-1 and Vol-2, 9th Edition, Pearson Education
India, ISBN-10: 9332518904 and 9332518890

• Kenneth Barclay and John Savage, Object-Oriented Design with UML and Java, Elsevier

Science. ISBN: 9780080497556

• Ronald Leach, Object-Oriented Design and Programming with C++: Your Hands-On Guide

to C++ , Academic Press, ISBN: 9781483214122

• M.Ben Ari, Principles of Concurrent Programming, Prentice-Hall International,
ISBN:0137010788

Reference Books

• Herbert Schilt, “JAVA Complete Reference”, 7th Edition, Tata McGraw Hill, ISBN:
9780070636774

• Scott W. Ambler ,The Elements of UML (TM) 2.0 Style, ISBN- 978-0521616782
• Sharon Zakhour, Scott Hommel, Jacob Royal, Isaac Rabinovitch, Tom Risser, Mark Hoeber,

“The Java Tutorial, ”Addison Wesley Professional, 2006, Print ISBN-10: 0-321-33420-5
• Eckel B., "Thinking in Java", 3rd Edition, Pearson Education, 2012

• E. Balagurusamy, Object Oriented Programming with C++, 6th Edition, McGraw Hill, ISBN-
10: 125902993X

Page 20/30

(PCC-06) Computer Organization

Teaching Scheme Evaluation Scheme

Lectures: 2Hrs/ Week

Theory: MES:30 Marks, TA:10 Marks ESE:60
Marks

Course Outcomes

Students will be able to:

1. Analyze Performance aspects, Instruction set architecture, and Functional Units.
2. Apply different computer arithmetic principles for implementation of functional units.
3. Interpret the working of memory hierarchy of computer system.
4. Justify the need of paging in virtual memory and secondary storage with its advantages.
5. Measure and analyze features of multiprocessor systems like bus arbitration,

Instruction pipelining, and RISC & CISC.
6. Examine Input/Output including interfaces, buses, interrupt handling mechanisms,

and I/O controllers

Course Contents

CPU Architecture: Performance understanding, Amdahl’s Law, Benchmarking, Flynn’s
Classification, Instruction format, control signals in CPU, micro program control unit and hardwired
control unit, ALU & sequencer, look ahead carry generator, MIPS ISA

[6Hrs]

Arithmetic: Integer Arithmetic-multiplication, Booth’s Algorithm, division algorithm; Floating point
number representation, and floating-point arithmetic

[6Hrs]

Memory: Dynamic RAM organization, Cache memory &basic cache optimizations, cache coherence
& MESI protocol, virtual memory, secondary storage, MBR and GPT hard disks, RAID, File system
FAT

 [8Hrs]

System and memory map: Closely coupled and loosely coupled multiprocessor systems, bus
arbitration, co-processor, lower 1MB memory map

[7Hrs]

Instruction Pipelining: Basic concepts and issues, Introduction to the basic features &
architecture of RISC & CISC processors, super scalar processor, MIPS pipeline

 [7Hrs]

Multiprocessing: Symmetricmultiprocessing (SMP), Asymmetric multiprocessing (AMP), Hardwired
based multithreading approaches and examples, Different examples of computer organization as per
Flynn’s Classification

[5Hrs]
Self Study
Closely coupled and loosely coupled multiprocessor systems, Differences in RISC & CISC approaches,
Differences in FAT and NTFS, Programs exhibiting Locality of Reference, Dependence analysis and
hazard detection using different resources. [12Hrs]

Page 21/30

Text Books

• William Stallings, Computer Organization and Architecture, 11/E ISBN- 9781292420103/
9781292420080, Pearson Education, Global Edition, 2021-22.

• Carl Hamacher, Zvonko Vranesic, Safwat Zaky, and Naraig Manjikian, Computer Organisation,
6th Edition, ISBN- 978-0-07-338065-0/ 0-07-338065-2, McGrawHill, 2011-12.

Reference Books

• D. Patterson, J. Hennessy, Computer Organization and Design: The Hardware Software
Interface, RISC V Edition, ISBN- 978-0-12-812275-4, Morgan Kauffman, 2018.

• Liu & Gibson, Microcomputer Systems, Second Edition, ISBN: 978-81-203-0409-3, PHI, 1985.
• John Uffenbeck, THE 8086/ 8088 FAMILY: Design, Programming, and Interfacing, EEE, ISBN-

0132467526/ 9780132467520, PHI, 1987.

(PCC-06) Theory of Computation
Teaching Scheme Evaluation Scheme
Lectures: 2Hrs/ Week
Tutorial: 1 Hr / Week 
Self-Study: 1 Hr / Week 

Theory: MSE: 30 Marks, TA: 10 marks
 ESE: 60 Marks

Course Outcomes
Students will be able to:

1. Design appropriate automata for modeling the solution for various computational problems.
2. Apply transformation between multiple representations of automata/machines.
3. Make use of the pumping lemma to show that a language is not regular/context-free.
4. Distinguish different formal computing languages and classify their respective types.
5. Describe the limitations of a computing machine in terms of language recognition.

Course Contents
Finite Automata: Computability, and Complexity, Strings and Languages: symbol, alphabet, string,
formal languages, Formal definition of a finite automaton, Designing finite automata, Non-
determinism: Formal definition, Equivalence of NFAs and DFAs, Minimization of
DFA.

[10 Hrs]

Regular Expressions: Regular Expressions: Formal definition of a regular expression, Equivalence
with finite automata, Closure properties of regular languages, the pumping lemma for regular
languages.

 [4 Hrs]

Context-Free Languages: Context-free Grammars: Formal definition, Designing context-free
grammars, Parse Trees, Ambiguity, Chomsky Normal Form. Pushdown Automata: Formal definition,
Examples.
 [6 Hrs]

Turing Machines and Undecidability: Turing Machines Formal definition, Examples, Decidability
and Undecidability:Decidable Languages: Decidable problems concerning regular languages,
Decidable problems concerning context-free languages, Undecidable problems, The Halting
Problem.
 [6 Hrs]

Page 22/30

Topics for Self study: Basic Mathematical notations and terminologies for set theory. Closure
Properties of context-free languages, the pumping lemma for context-free languages. Variants of
Turing Machine: Multi-tape Turing machines, Nondeterministic Turing machines,
Enumerators.

[6 Hrs]

Text Books:
• Michael Sipser, “Introduction to the Theory of Computation”, 3rd Edition, 2013,
Cengage Learning Publications, ISBN-13: 978-1133187790.
• John. E. Hopcroft, Rajeev Motwani, J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computations”, 3rd Edition, 2009, Pearson Education Publisher, ISBN-10:
0321455363 / ISBN-13: 978-0321455369

Reference Books:

• E. V. Krishnamurthy, “Theory of computer science”, 2004, Affiliated East Press
Publications, ISBN-10: 038791255X / ISBN-13: 978-0387912554.
• Dexter C. Kozen, "Automata and Computability", 1997, Springer Verlag Publications,
ISBN 0-387-94907-0.
• Harry Lewis, Christos H. Papadimitriou, “Elements of the Theory of Computation”, 2nd
Edition, 1997, Prentice-Hall Publications, ISSN 0891-4516.
• John Martin, “Introduction to Languages and Theory of Computations”, 4th edition,
2010, McGraw-Hill Publications, ISBN 978–0–07–319146–1 / MHID 0–07–319146–9.

Page 23/30

(OE-02) Fundaments of Operating Systems
Teaching Scheme: Evaluation Scheme:
Lectures: 2 Hrs / Week MSE: 30 marks
Self Study: 1 Hrs / Week TA: 20 marks

ESE: 50 marks
Course Outcomes:
Upon completion of this course, participants will be able to:

1. Understand the structure of OS and basic architectural components involved in OS design.
2. Describe the mechanisms of OS to handle processes, threads, and their communication.
3. Analyze the memory, file, and resource management techniques.
4. llustrate the role of paging, segmentation, and virtual memory in operating systems.

Course Contents
Introduction to Operating System (OS): Computer System, OS Operations, Virtualization,
Distributed Systems, Kernel Data Structures, Computing Environments, OS Services, User and OS
Interface, System Calls, System Services, OS Design, OS Structure. [6 Hrs]
Process Management: Scheduling, Operations, Interprocess Communication, Models of IPC,
Thread, Multicore Programming, Multithreading Models, Implicit Threading, CPU scheduling,
Scheduling Algorithms, Thread Scheduling, Multi-Processor Scheduling. [6 Hrs]
Process Synchronization: Critical-section, Peterson’s Solution, Hardware Support, Mutex Locks,
Semaphores, Classic Problems of Synchronization, Synchronization within the Kernel, Deadlocks:
necessary conditions, Prevention, Avoidance, and Detection. [6 Hrs]
Memory Management: Logical and Physical Memory, Contiguous Memory Allocation, Paging,
Swapping, Virtual Memory, Demand Paging, Page Replacement, Allocation of Frames, Thrashing,
Secondary Storage: HDD Scheduling, Swap-Space Management. [6 Hrs]
File Management: File Concept, Access Methods, Directory Structure, Protection, Filesystem
Structure, Directory Implementation, Allocation Methods, Free-Space Management, Recovery,
Filesystem Mounting, Partitions and Mounting, File Sharing. [6 Hrs]
Self Study Unit: Case Studies of Linux OS: Design Principles, Kernel Modules, Process
Management, Scheduling, Memory Management, File Systems.

Textbooks

• “Operating System Concept” by Abraham Silberschatz, Peter Baer Galvin, Greg
Gagne, 10th Edition, 2021, Wiley, ISBN-978-1-119-32091-3.
• “Modern Operating System”, by Andrew S. Tanenbaum, 5th Edition, 2022, Pearson
Education, ISBN 13: 978-0137618873.

Teaching Scheme Evaluation Scheme

Lectures: 2 Hrs/ Week Theory:
Test1: 20 Marks, Test2: 20 Marks,
ESE: 60 Marks

Course Outcomes:
 Upon completion of this course, participant will be able to:
1. Understand the structure of OS and basic architectural components involved in OS design.

2. Describe the mechanisms of OS to handle processes, threads, and their communication.

3. Analyze the memory, file, and resource management techniques.

Page 24/30

4. Illustrate the role of paging, segmentation, and virtual memory in operating systems.

Course Contents
Introduction to Operating System (OS): Computer System, OS Operations, Resource
Management, Security and Protection, Virtualization, Distributed Systems, Kernel Data Structures,
Computing Environments, OS Services, User and OS Interface, System Calls, System Services,
Linkers and Loaders, OS Design, OS Structure, Building and Booting an OS.

[8 Hrs]

Process Management: Concept, Scheduling, Operations, Interprocess Communication, models of
IPC, thread, Multicore Programming, Multithreading Models, Implicit Threading, CPU scheduling,
Scheduling Algorithms, Thread Scheduling, Multi-Processor Scheduling.

[8 Hrs]

Process Synchronization: Critical-section, Peterson’s Solution, Hardware Support, Mutex Locks,
Semaphores, Monitors, Classic Problems of Synchronization, Synchronization within the Kernel,
POSIX Synchronization, Deadlocks: necessary conditions, Prevention, Avoidance, and Detection.

[8 Hrs]

Memory Management: logical and physical memory, Contiguous Memory Allocation, Paging,
Swapping, Virtual Memory, Demand Paging, Page Replacement, Allocation of Frames, Thrashing,
secondary storage: HDD Scheduling, Swap-Space Management, RAID Structure.

[8 Hrs]

File Management: File Concept, Access Methods, Directory Structure, Protection, File-System
Structure, Directory Implementation, Allocation Methods, Free-Space Management, Recovery,
Filesystem Mounting, Partitions and Mounting, File Sharing, Virtual File Systems, Remote File
Systems. [8 Hrs]

Self Study Unit
Case Studies and Analysis: Case studies of real-world operating systems or scenarios where
operating system design and concepts have played a critical role. Students have to analyze these
case studies, identifying the OS components involved, design decisions made, and their impact on
system performance and reliability. [8 Hrs]

Text Books
• “Operating System Concept” by Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, 10th

Edition, 2021, Wiley, ISBN-978-1-119-32091-3.
• “Modern Operating System”, by Andrew S. Tanenbaum, 5th Edition, 2022, Pearson Education, ISBN

13: 978-0137618873.

Page 25/30

(OE-02) Fundamentals of Algorithms

Teaching Scheme Evaluation Scheme

Lectures: 2 Hrs/ Week Theory:
CIE: 100 Marks

Course Outcomes

Students will be able to:

a. Recall and comprehend time and space complexity of algorithms and evaluate
algorithmic efficiency in terms of runtime and memory usage using asymptotic
analysis.

b. Describe the performance of recursive algorithms and analyze the correctness and
efficiency of their solutions.

c. Evaluateand use appropriate algorithmic techniques, and design efficient solutions
to various computational challenges.

d. Apply design technique that would be most suitable to solve a given problem, justify
the technique used and analyze the resultant algorithm.

Course Contents

Basics of Algorithm: Introduction to algorithm, Classification of algorithms- Deterministic, non-
deterministic, performance analysis of an algorithm, time and space complexity, asymptotic

notations (O, Ω, θ notations), complexity analysis with examples.

[6 Hrs]

Design Techniques-I: Greedy Methods: Introduction, Knapsack problem, Job sequencing with
deadlines, Dijikstra’s Single source shortest paths, Minimum cost spanning tree: Prim's algorithm,
Kruskal's algorithm, Optimal merge patterns.

[6 Hrs]

Design Techniques-II: Divide and Conquer:Introduction,Mergesort, Binary Search, Quicksort,
Multiplication of two n-bit numbers.

[5 Hrs]

Design Techniques-III: Dynamic Programming: Introduction, All pairs shortest paths, Traveling
salesperson problem, Longest common subsequence, Bellman-Ford algorithm.

[5 Hrs]

Graph Algorithms: Depth-first search (DFS), breadth-first search (BFS), Topological sort.
[4 Hrs]

Selected Algorithms: String Matching: The naïve string-matching algorithm, The Robin-Karp
algorithm, The Knuth- Morris-Pratt algorithm; [4 Hrs]

Self Study Unit:
Algorithmic Problem Solving Platforms:Activity: Solve algorithmic problems on platforms like
LeetCode or HackerRank. [8Hrs]

Page 26/30

Text Books

9. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, “Fundamentals of Computer
Algorithms”, Universities Press, 2nd edition (2008) , ISBN-13: 978-8173716126

10. Thomas Cormen, Charles Leiserson, Ronald Rivest and Cliford Stein, “Introduction to
Algorithms”, PHI, 3rd edition, ISBN-13: 978-8120340077

Reference Books

11. Gilles Brassard and Paul Bratley, “Fundamentals of Algorithmics”, PHI, ISBN-13: 978
8120311312

12. Jon Kleinberg and Éva Tardos, “Algorithm Design”, Pearson Education India, ISBN-13: 978-
9332518643

Page 27/30

(VSEC-01) Development Tools Laboratory

Teaching Scheme Suggested Evaluation Scheme

Labs: 2 Hrs / Week Laboratory: CIE 100 Marks

Course Outcomes

Students will be able to:

1. Develop an application in a group using GIT, demonstrating ability to work remotely, push,
and pull.

2. Write a report in a specified format using LaTEX.
3. Demonstrate programming ability using Unix Shell.

Course Contents

LaTEX: Basic syntax, compiling and creating documents; Document structure, sections, paragraphs;
packages, Math, Adding Images, Drawing images (using tools like Inkscape) Table of contents;
Source code, graphs (using tools like Graphviz), Adding references, different templates, IEEE format,
Bibliography

Shell Programming: Introduction to Linux commands, concept of shell, shell variables, getcwd()
and pwd; Introduction to shell programming features: Variables declaration & scope, test, return
value of a program, if-else and useful examples, for and while loop, switch case; Shell functions,
pipe and redirection, wildcards, escape characters; Awk script: Environment and workflow, syntax,
variables, operators, regular expressions, arrays, control flows, loops, functions, output redirections

GIT: Creating a project using git locally, add, commit, status, diff; branch and merge, GIT: cloning
a remote repo, working with a remote repo – git push, pull, fetch; creating issues and pull requests;
working on a project in a distributed fashion

Suggested List of Assignments:

• The lab incharge will impart instructions during a part of the lab session and assign the

assignments based on it for an appropriate duration of days.

1. Format a given essay using sections, paragraphs, headings in LaTEX.
2. Format a given report in IEEE format using LaTEX.
3. Write a shell program which reads a set of unspecified count of numbers and prints their

sum and average.
4. Write a shell program to extract a compressed file in any format (zip, tar.gz, tar.gz2, .tar,

.bz2, .gz, .rar, .Z, .7z, etc)
5. Write a shell program to convert a CSV file of contacts, into a VCF file.
6. Write a shell program to sort all files stored in a given folder hierarchy, on their size.
7. Write a shell script to manage a todo list from command line. The script should be able to

add, remove, list, sort, prepend, append, deduplicate todo-items
8. Write a program that scans a file line by line, splits each input line into fields later,

compares input line/fields to pattern and performs action(s) on matched lines
9. Develop a program using git locally. E.g. add the exponent operator to the calculator

program that you wrote. Demonstrate the ability to do git add, commit, status, diff.
10. Create a branch in your calculator program to do hexadecimal calculation. Write code and

develop two branches. Merge the two to have a decimal/hex calculator. Demonstrate git
branch, merge capability.

Page 28/30

11. In a group of 3, create a github/gitlab repo. Raise issues, send pull requests, do the local
and remote merges and finally get a synced local repo. For example, in the calculator
project one student to become the developer, the other two to create issues and send pull
requests for features like adding an operator, developing pulling those requests. Rotate the
roles and repeat.

References:

LaTEX

• Leslie Lamport, “LaTeX: A document preparation system”, User’s guide and reference manual,
2nd Edition, 1994, by Addison-Wesley Professional. ISBN 0201529831, 9780201529838

• Stefan Kottwitz, “LaTeX Beginner's Guide: Create High-quality and Professional-looking Texts,
Articles, and Books for Business and Science Using LaTeX, Packt Publishing, 2011. ISBN:
1847199860, 9781847199867
”https: //www.latex-project.org/

• Introduction to LaTEX, MIT
http: //web.mit.edu/rsi/www/pdfs/new-latex.pdf

• A simple guide to LaTeX - Step by Step
https: //www.latex-tutorial.com/tutorials/

Shell

• Bash Guide for Beginners: https://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-
Beginners-Guide.pdf

• Bash Reference Manual https://www.gnu.org/software/bash/manual/bash.pdf
• Tutorials on Shell Programming https://www.shellscript.sh/

https://www.tutorialspoint.com/unix/shell_scripting.htm

GIT

Pro GIT Book https: //github.com/progit/progit2/releases/download/2.1.204/progit.pdf

https://www.latex-project.org/
http://web.mit.edu/rsi/www/pdfs/new-latex.pdf
https://www.latex-tutorial.com/tutorials/
https://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
https://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
https://www.gnu.org/software/bash/manual/bash.pdf
https://www.shellscript.sh/
https://www.tutorialspoint.com/unix/shell_scripting.htm
https://github.com/progit/progit2/releases/download/2.1.204/progit.pdf

Page 29/30

(MD M-02) Data Structures, Files and Algorithms

Teaching Scheme: Examination Scheme:
Lectures: 3 Hrs/week

Theory: MES:30 Marks, TA:10, ESE: 60
Marks

Course Outcomes

 Students will be able to:

1 Write neat code by selecting appropriate data structure and demonstrate a working solution
for a given problem.

2 Demonstrate the ability to write reusable code and abstract data types.
3 Demonstrate the ability to implement different data structures with variety of

implementations.
4 Analyze and compare given algorithms for time and space complexity.
5 Handle all possible cases in designing an algorithm.
6 Demonstrate the ability to write modular and re-usable code.

Course Contents

Introduction: Concept of Data types and Abstract Data types; Characteristics of an algorithm;
Analyzing programs; Frequency count; Time and space complexity; Big 'O' and Ώ‟ notation; Best,
average and worst cases; Programming language provided data types, operations on various data
types; Dangling pointers and garbage memory

[4 Hrs]
Arrays, Searching and Sorting: Searching: linear and binary search algorithm; Hashing: hashing
functions, chaining, overflow handling with and without chaining, open addressing: linear, quadratic
probing; Sorting: bubble sort, selection sort, quick sort, merge sort, insertion sort. Time complexity
analysis of searching and sorting techniques.

 [8 Hrs]
Files and File Handling: Files handling: various library functions for handling files; system call
interface and library interface; Different file formats like csv, pdf, odt, etc; Text and binary files;
Programs to copy, concatenate, rename files; Programs to handle existing file types; arguments to
main() ;

 [6 Hrs]
Stacks and Queues: Stack and queue as ADT; Operations on stack and queue; Implementations
using arrays and dynamic memory allocation; Application of stack for expression evaluation,
expression conversion; Recursion and stacks; Problems like maze and knight's tour.

[6 Hrs]
Linked Lists: Dynamic memory management; List as ADT; Concept of linked organization of data
against linked list; Singly linked list, doubly linked list, circular linked list; Representation &
manipulations of polynomials/sets using linked lists;

[8 Hrs]
Trees: Basic terminology; Binary trees and its representation; Types of Binary tree; Binary tree
traversals and various operations; Insertion and deletion of nodes in binary search tree; Applications
of trees;
 [8 Hrs]

Page 30/30

Self Study Unit:
Introduction to graph data structure; Types of graphs: directed, undirected, weighted, unweighted
Graph representation: adjacency matrix, adjacency list; Graph traversal algorithms: depth-first
search (DFS), breadth-first search (BFS);
Minimum spanning tree algorithms: Prim's algorithm, Kruskal's algorithm
 [8 Hrs]

Text Books

• E. Horowitz, S. Sahni, S.Anderson-freed, “Fundamentals of Data Structures in C”, Second
Edition, University Press, ISBN 978-81-7371-605-8

• B. Kernighan, D. Ritchie, “The C Programming Language”, Prentice Hall of India, Second
Edition, ISBN 81-203-0596-5

• Y. Langsam, M. Augenstin and A. Tannenbaum, “Data Structures using C”, Pearson Education
Asia, First Edition, 2002, ISBN 978-81-317-0229-1

Reference Books

• Ellis Horowitz, S. Sahni, D. Mehta “Fundamentals of Data Structures in C++”, Galgotia Book
Source, New Delhi 1995 ISBN 16782928

• Jean-Paul Tremblay, Paul. G. Soresan, “An introduction to data structures with Applications”,
Tata Mc-Graw Hill International Editions, 2nd edition 1984, ISBN-0-07-462471-7

