

COEP TECHNOLOGICAL UNIVERSITY, PUNE

A Unitary Public University of Government of Maharashtra (formerly College of Engineering Pune)

School of Transdisciplinary Sciences & Management Wellesley Road, Chhatrapati Shivajinagar, Pune - 411005.

Course Title: Design Thinking and Idea Lab (DTIL)

Course Code	AS23003	Scheme of	CE & ESE
		Evaluation	
Teaching Plan	0-0-2-1 = 1	MID Semester	Individual Assignments/Group tasks- 40 marks
(L-T-P-S)=TC			Class/team participation- 10 marks
Credits	1	END Semester	Project Based Learning (PBL)- 50 marks
			(50 – PBL & 10 participation

Syllabus:

Unit	Contents	Practical		
	Part 1- THINKING (Methodology of Design Thinking)			
01.	An Insight to Learning			
	Experiential Learning Styles, Self-assessment			
	Psychological Principles in Design Thinking			
	Perception & Observation, Imagination & Creative Confidence (lateral			
	thinking & 6 thinking hats)			
02.	Design Thinking Framework			
	Introduction to different frameworks of DT, Stanford d. school framework			
	Empathize, Define, Ideate, Prototype, Test			
	Case Study: IDEO Shopping Cart, etc.			
03.	User-Design Relationship	4		
	Levels of Designs			
	Understanding users through interviews, personas, empathy maps/affinity			
	diagrams/journey maps and need identification			
04.	Introduction to Human Centric Tools in Design Thinking Process	2		
	Brainstorming & Mind mapping			
	POV and HMW			
	Part 2- DESIGN (Idea Lab)			
	Applications of the Principles- Department Level			
05.	Process of Product Design	2		
	Process of simple Product Design using real life problem statements from			
	our daily routine activities, Design Thinking Approach, Stages of Product			
	Design, Examples of best product designs and functions. Hands on Lab			
	Assignment –Simple routinely used Product Design. Hands on			
	demonstration of how to translate the ideas into physical objects. Better			
	visualization of the ideas and concepts using, IDEA LAB/FAB LAB facilities			
	such as Wood router, Laser cutting of thin plastic sheets, clay modelling,			

	Expandable Polystyrene etc		
06.	Prototyping	4	
	What is Prototype? Understanding necessity of making prototypes by		
	building the prototypes for pre-selected Engineering problem, using one		
	or combinations of the digital fabrication techniques & electronics		
	fabrication systems.		
07.	Testing	2	
	Testing, Sample Example, Test Group Marketing Feedback, Re-Design &		
	Re-Create		
08.	Feedback, Re-Design & Re-Create	2	
	Final Presentation – "Solving Practical Engineering Problem through		
	Innovative Product Design & Creative Solution"		

Course outcomes:

Students will be able to

CO1: Outline various learning styles and psychological principles and Infer Design Thinking principles & methodology.

CO2: Explain the levels of designs and Experiment with the process using human centric tools.

CO3: Propose real-time innovative engineering product designs and Choose appropriate frameworks, strategies, techniques for prototype development.

CO4: Appraise user feedback and Propose corrective innovative solutions to meet project requirements using critical thinking skills.

Suggested Learning Resources:

- 1. Norman, D. (2013). The Design of Everyday Things. Basic Books, NY.
- 2. Norman, D. (2004). Emotional Design. Basic Books, NY.
- 3. Brown, T. (2019). Change by Design. HarperCollins Publishers, NY.
- 4. Lal, D. M. (2021). Design Thinking- Beyond the Sticky Notes. Sage Publications India Pvt. Ltd.
- 5. Malik, A. D. M. (2019). Design Thinking for Educators. Notion Press, Chennai, India.
- 6. E. F. Crawley, "Creating the CDIO Syllabus, a universal template for engineering education," *32nd Annual Frontiers in Education*, Boston, MA, USA, 2002, pp. F3F-F3F, doi: 10.1109/FIE.2002.1158202.
- 7. Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. *Journal of engineering education*, *94*(1), 103-120.
- 8. Panke, S. (2019). Design thinking in education: Perspectives, opportunities and challenges. *Open Education Studies*, 1(1), 281-306.
- 9. Parmar, A. J. (2014, October). Bridging gaps in engineering education: Design thinking a critical factor for project based learning. In 2014 IEEE frontiers in education conference (FIE) proceedings (pp. 1-8). IEEE.
- 10. Thompson, L., & Schonthal, D. (2020). The Social Psychology of Design Thinking. California Management Review, 62(2), 84–99. https://doi.org/10.1177/0008125619897636