

COEP TECHNOLOGICAL UNIVERSITY, PUNE

A Unitary Public University of Government of Maharashtra (formerly College of Engineering Pune)

School of Transdisciplinary Sciences & Management Wellesley Road, Chhatrapati Shivajinagar, Pune - 411005.

F.Y. B.Tech. (Semester I/II): Biology for Engineers (BFE)

Course Code	AS23004	Scheme of Evaluation	MSE & ESE
Teaching Plan (L-T-P-S)=TC	2-0-0-1= 2	MID Semester	50
Credits	2	END Semester	50

Syllabus:

Unit	Contents	L		
01.	Crosstalk between Biology and Engineering			
	a) Biologically inspired technologies: Case studies of designs in nature			
	and inspired technologies, Biomemetics: Nature inspired material			
	and mechanisms, Self-cleaning surfaces; Self-healing Bioconcrete,			
	Biomining, Algorithms in nature,			
	b) Contribution of engineering in biological domain: Contribution of			
	Microscope, Imaging techniques, Bio-medical Instruments,			
	Mechanisms (Ergonomics)			
02.	Organization of Living Machines	8		
	Biomolecules and manufacturing of Biopolymers:			
	 Carbohydrates (structure-based function and engineering 			
	applications)			
	 Lipids (structure-based function and engineering applications) 			
	 Proteins (structure-based function and engineering applications) 			
	Nucleic Acids (structure-based function and engineering)			
	applications)			
	Organization of life forms: Cell to organism			
	Bioenergetics- Energy dynamics in biological system- principles of energy			
	conservation and optimization			
03.	Analogy of biological organ/system and engineering Device/Mechanism	6		
	Organ & system: Brain & CPU, Eye & Camera, Kidney & Filtration system,			
	Lungs & purification system, Heart & Pumping system Process:			
	Photosynthesis & solar cells, Xylem & plumbing, Thermoregulation in			
	human body & heat transfer in machine, Defense mechanism in organism,			
	signaling processing in biology and electronics			
04.	Concepts in Bioengineering	6		
	Biomechanics: Mechanical properties of tissues, Prosthesis and			
	rehabilitation			
	Bioprinting: 3D printing of biological tissues and organ engineering and			
	transplanting			
	Biomaterials: Types, properties and applications			
	Tissue Engineering: Principle, Components, Methods of Scafold synthesis,			
	properties and applications			
05.	Application areas of Bioengineering	6		

Databases & Biocomputing: Acquisition, storage, processing and

transmission of biological data and its applications like PCR Bioinstrumentation: Diagnostic and Therapeutic devices Bio-medical imaging: Principle, types and examples

Biosensors: Principle, types and examples

Computational biology and application of Artificial Intelligence in bio-

medical field

Course outcomes:

Students will be able to

CO1: Recognize the correlation in Biology and Engineering domain

CO2: Reiterate the fundamental concepts in Biology

CO3: Compare the analogy of structure/ process with device/ mechanism

CO4: Integrate the Biological concepts in Engineering field

CO5: Appraise the applications of Biological processes through the Engineering interventions

Suggested learning resources:

- 1. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry. New York: Worth Publishers.
- 2. Lewin B. (2000) Genes VII. Oxford University Press.
- 3. Rao CNR, et.al. Chemistry of Nanomaterials: Synthesis, Properties and Applications.
- 4. Eggins BR. (1006) Biosensors: An Introduction. John Wiley & Sons Publishers.
- 5. Palsson B.O. and Bhatia S.N. (2009) Tissue Engineering. Pearson.
- 6. Susan Hockfield (2019) The Age of Living Machines How Biology Will Build the Next Technology Revolution
- 7. Shu Chien, Peter C Y Chen & Y C Fung (Ed.) (2000) An Introductory Text to Bioengineering. World Scientific.
- 8. NPTEL Course on Biology for engineers and other non-biologists (4 weeks UG Course) By Prof. G.K. Suraishkumar & Prof. Madhulika Dixit (IIT. Madras)